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ABSTRACT
Recent results (Fioravanti, Mareček, Shorten, Souza, & Wirth, 2019; Kungurtsev,
Marecek, Ghosh, & Shorten, 2023; Mareček, Roubalik, Ghosh, Shorten, & Wirth,
2023) on the unique ergodicity of feedback systems, which strive to orchestrate the
behaviour of a single ensemble of agents, demonstrate that, under straightforward
conditions, convergence in distribution of the feedback loop to a unique invariant
measure can be guaranteed. These results were motivated by sharing-economy ap-
plications, where one strives to provide guarantees on the allocation of constrained
resources under a feedback signal. In this paper, we extend these existing results to
the case of larger-scale interconnections containing two or more ensembles of agents.
This direction may be construed as an analogue of the classical theory of intercon-
nected dynamical systems under uncertainty of the systems’ models. Our key finding
is that traditional small-gain-like results do not apply. In the case of linear filters
and controllers, interconnections of such ensembles of agents are uniquely ergodic if
and only if the controllers and filters are stable.

KEYWORDS
Randomized methods; multi-agent systems; control of interconnected systems;
simulation of stochastic systems; dynamic resource allocation

1. Introduction

A number of societal-scale challenges should be addressed using control-theoretic ap-
proaches, as has been suggested by a roadmap (Annaswamy, Johansson, Pappas, et al.,
2023) co-sponsored by IFAC and IEEE CSS. Many of these challenges require a model
of human behaviour, which in turn requires a probabilistic model of the response to
a control signal. For instance, one can consider non-linear probability functions (Fio-
ravanti et al., 2019). At the same time, these challenges require that the closed-loop
system exhibits behaviour acceptable both from the perspective of the system operator
(e.g., in terms of regulation of the aggregate behaviour of a number of individuals) and
the individual perspective (e.g., predictability and fairness of the average allocation of
a resource to an individual). Traditional control theory does not seem well-equipped
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to deal with such problems in the control of multi-agent systems.

A number of such novel challenges arise from the so-called sharing economy (An-
naswamy et al., 2023, Section 2.D). There, one often encounters two-sided markets
(Lobel, 2020; Rochet & Tirole, 2006). For example, in modelling online labour plat-
forms, these enable the interaction between human customers submitting jobs over
time and workers performing these jobs. On the one side, a controller might be sug-
gesting prices to the customers; while on the other, a controller matches the jobs to
the workers. Both the customers and workers likely exhibit what would be considered
“random” behaviours in regard to their acceptance or rejection of prices and jobs,
respectively, by an outside observer. That is, one customer might accept a price while
another does not. One worker might accept a job while another does not. These ran-
dom behaviours can be modelled using so-called probability functions (Fioravanti et
al., 2019).

This paper aims to demonstrate results on ergodicity in regard to these random
behaviours. Informally speaking, we call a feedback system uniquely ergodic when, for
every agent i, there exists a limit of a long-term average allocation of a resource to the
agent, independent of any initial conditions. In turn, the notion of unique ergodicity
underlies a natural notion of fairness, distinct from other popular notions of fairness
(Bateni, Chen, Ciocan, & Mirrokni, 2022), where the limit coincides across all agents
or market participants. A necessary condition for the feedback system to be uniquely
ergodic is to be contractive on average.

Specifically, in this paper, we consider interconnections of populations of agents ex-
hibiting stochastic behaviours, where each population has associated with it a stable
controller. We show that, provided that the individual systems in the feedback inter-
connection are ergodic, then the interconnections of these systems will also be ergodic
(under some straightforward assumptions).

The results presented form a natural extension of the ideas on ensemble control
presented in Fioravanti et al. (2019); Ghosh, Mareček, Griggs, Souza, and Shorten
(2022); Kungurtsev et al. (2023); Mareček et al. (2023). In Fioravanti et al. (2019);
Ghosh et al. (2022); Kungurtsev et al. (2023); Mareček et al. (2023), all agents can
be thought of as responding to the prices a central organising entity sets or signals it
provides. It was shown that a population of agents in a simple feedback interconnection
with stable controller and stable filter results in ergodic behaviour. Kungurtsev et al.
(2023); Mareček et al. (2023) extended the results to non-linear controllers and filters.

We now extend results presented in Fioravanti et al. (2019) to a feedback intercon-
nection containing two (or more) populations of agents exhibiting certain stochastic
behaviours. Our results suggest the following:

• When each population is subject to a stable controller and filtered output, one
obtains unique ergodicity. (State converges in distribution to a unique invariant
measure.)

• Small-gain-like results do not apply to linear controllers and filters: interconnec-
tions of such systems are uniquely ergodic if and only if the controllers and filters
are stable.

The remainder of this work is organised as follows. In Section 2, we provide the
necessary mathematical preliminaries. In Section 3, the main result for an intercon-
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nection of two ensembles of agents is presented. In Section 4, the result is extended to
the case where there are multiple ensembles of agents (i.e., more than two). A simu-
lated example demonstrating the main result is presented in Section 5. Discussion on
potential applications is provided in Section 6. Section 7 contains the conclusions and
possible directions for future work.

2. Mathematical Preliminaries

This paper builds on the work of Fioravanti et al. (2019), and aims to reuse as much of
the notation as is feasible, albeit noting that we will consider two (or more) different
populations of agents, as opposed to the single population of agents considered in
Fioravanti et al. (2019). In general, we will use the superscript to distinguish between
the populations of agents. For example, we will let Π1 ⊆ R and Π2 ⊆ R denote sets of
admissible broadcast control signals for the two populations of agents. Suppose that
each agent from the first population responds to a control signal π1 ∈ Π1, and each
agent from the second population responds to a control signal π2 ∈ Π2.

As in Fioravanti et al. (2019), these responses contain non-deterministic elements
that can be modelled by agent-specific probability distributions. For each agent i in
each population o ∈ {1, 2}, and for all k ∈ Z+, we have that

P
(
xoi (k + 1) = Wo

ij(x
o
i (k))

)
= poij(π

o(k)), (1a)

P
(
yoi (k) = Ho

il(x
o
i (k))

)
= po

′

il (π
o(k)), (1b)

where Wo
ij , for j = 1, 2, . . . , wo

i ∈ N, denotes all possible state transition maps, and
Ho

il, for l = 1, 2, . . . , hoi ∈ N, denotes all possible output maps, for each agent i, similar
to Fioravanti et al. (2019, Section 2.2). The poij : Π

o → [0, 1] and po
′

il : Π
o → [0, 1] are

probability functions. Additionally, for all πo ∈ Πo, o ∈ {1, 2}, it holds that

wo
i∑

j=1

poij(π
o) =

ho
i∑

l=1

po
′

il (π
o) = 1. (1c)

3. Interconnections of Two Ensembles

Consider the system depicted in Figure 1, where P1 and P2 denote two different
populations of agents of sizes N1 ∈ Z+ and N2 ∈ Z+, respectively. The individual
agents’ states are described by finite-dimensional, linear, shift-invariant systems, as
follows:

P1
i :

{
x1i (k + 1) = A1

ix
1
i (k) + b1i ,

y1i (k) = c1Ti x1i (k) + d1i ,
(2)

for i = 1, 2, . . . , N1; and

P2
i :

{
x2i (k + 1) = A2

ix
2
i (k) + b2i ,

y2i (k) = c2Ti x2i (k) + d2i ,
(3)
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for i = 1, 2, . . . , N2. It is assumed that all of the A1
i ∈ Rn1

i×n1
i and A2

i ∈ Rn2
i×n2

i are
Schur matrices (i.e., the spectral radii of the matrices are less than one), where n1

i ∈ Z+

and n2
i ∈ Z+; x1i , c

1
i ∈ Rn1

i and x2i , c
2
i ∈ Rn2

i ; and the inputs b1i , d
1
i , b

2
i and d2i are random

variables that take values in Rn1
i , R, Rn2

i and R, respectively, with P(b1i = b1ij) = p1ij(π
1),

P(d1i = d1il) = p1
′

il (π
1), P(b2i = b2ij) = p2ij(π

2) and P(d2i = d2il) = p2
′

il (π
2), where π1 and

π2 are control signals as described in detail below.

Figure 1. Interconnection of two different populations of agents.

Let y1(k) =
∑N1

i=1 y
1
i (k) and y2(k) =

∑N2

i=1 y
2
i (k), noting that y1 and y2 are also

random variables. The agents comprising P1 and P2 respond to the control signals π1

and π2, respectively, which are produced by the controllers

C1 :

{
xC1(k + 1) = AC1xC1(k) +BC1e1(k),

π1(k) = CC1xC1(k) +DC1e1(k),
(4)

and

C2 :

{
xC2(k + 1) = AC2xC2(k) +BC2e2(k),

π2(k) = CC2xC2(k) +DC2e2(k),
(5)

where xC1 ∈ RnC1 , xC2 ∈ RnC2 , nC1 ∈ Z+, nC2 ∈ Z+ and e1(k) = u1(k) − ŷ2(k),
e2(k) = u2(k) + ŷ1(k). Moreover, ŷ1 and ŷ2 are the outputs of the filters

F1 :

{
xF1(k + 1) = AF1xF1(k) +BF1y1(k),

ŷ1(k) = CF1xF1(k),
(6)
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and

F2 :

{
xF2(k + 1) = AF2xF2(k) +BF2y2(k),

ŷ2(k) = CF2xF2(k),
(7)

respectively, where xF1 ∈ RnF1 , xF2 ∈ RnF2 and nF1 ∈ Z+, nF2 ∈ Z+. The main
result of the paper follows.

Theorem 3.1 (Main Result). Consider the feedback system illustrated in Figure 1,
where C1 and C2 are controllers described by (4) and (5), respectively, and F1 and
F2 are filters described by (6) and (7), respectively. Assume that each agent i from
its respective population has its state dynamics determined by the stochastic difference
equations of (2) or (3), as appropriate, where all of the A1

i and A2
i are Schur matrices;

and the b1i , d
1
i , b

2
i and d2i are chosen, at each time step, from the sets {b1ij} ⊂ Rn1

i ,

{d1il} ⊂ R, {b2ij} ⊂ Rn2
i and {d2il} ⊂ R, respectively, according to Dini continuous

probability functions p1ij(·), p1
′

il (·), p2ij(·), and p2
′

il (·), respectively, that verify (1). Sup-

pose, further, that the probability functions p1ij(π
1), p1

′

il (π
1), p2ij(π

2), and p2
′

il (π
2) are

bounded below by scalars that are strictly greater than zero for all (i, j), or (i, l), and
all π1 ∈ Π1, or π2 ∈ Π2, as appropriate. Then, for every pair of stable controllers,
C1 and C2, and every pair of stable filters, F1 and F2, the feedback loop converges in
distribution to a unique invariant measure.

Proof: Let x1(k) := [x11(k)
T x12(k)

T . . . x1N1(k)T ]T , x2(k) := [x21(k)
T x22(k)

T . . .
x2N2(k)T ]T , b1 := [b1T1 b1T2 . . . b1TN1 ]T , b2 := [b2T1 b2T2 . . . b2TN2 ]T , d1 := [d11 d12 . . . d1N1 ]T

and d2 := [d21 d
2
2 . . . d

2
N2 ]T . Define the augmented state ξ(k) := [x1(k)T x2(k)T xF1(k)T

xF2(k)T xC1(k)T xC2(k)T ]T whose dynamic behaviour is described by the difference
equation

ξ(k + 1) = Aξ(k) + β,

where

A :=



Â1 0 0 0 0 0

0 Â2 0 0 0 0

BF1Ĉ1 0 AF1 0 0 0

0 BF2Ĉ2 0 AF2 0 0
0 0 0 −BC1CF2 AC1 0
0 0 BC2CF1 0 0 AC2

 ,

1 denotes row vectors of appropriate dimensions containing 1’s as entries, Â1 :=
diag(A1

1, . . . , A
1
N1), Â2 := diag(A2

1, . . . , A
2
N2), Ĉ1 := [c1T1 c1T2 . . . c1TN1 ], Ĉ2 := [c2T1

c2T2 . . . c2TN2 ] and

β :=


b1

b2

BF11d1

BF21d2

BC1u1(k)
BC2u2(k)

 .
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The remainder of the proof then follows in a manner similar to the proof of Fioravanti
et al. (2019, Theorem 12) upon noting that σ(A) = σ(Â1)∪σ(Â2)∪σ(AF1)∪σ(AF2)∪
σ(AC1) ∪ σ(AC2), where σ(·) denotes the spectrum of a matrix; and that all of the A1

i
and A2

i , and AF1 , AF2 , AC1 and AC2 , are Schur matrices by assumption. ■

4. More Than Two Ensembles

Building on the techniques of Section 3, it is possible to consider interconnections
that contain larger numbers of ensembles of agents (i.e., greater than two ensembles),
and show that, under certain sufficient conditions, the interconnections converge in
distribution to unique invariant measures. Suppose that a large-scale interconnection
of ensembles contains Q populations of agents, where Q ∈ Z+. Let Pq denote each
of these different populations of agents, where q = 1, 2, . . . , Q. Let the size of the qth
population of agents be denoted by N q ∈ Z+.

The individual agents’ states in the qth population are described by finite-
dimensional, linear, shift-invariant systems, as follows:

Pq
i :

{
xqi (k + 1) = Aq

ix
q
i (k) + bqi ,

yqi (k) = cqTi xqi (k) + dqi ,
(8)

for i = 1, 2, . . . , N q. It is assumed that all of the Aq
i ∈ Rnq

i×nq
i are Schur matrices, where

nq
i ∈ Z+; xqi , c

q
i ∈ Rnq

i ; and the inputs bqi and dqi are random variables that take values

in Rnq
i and R, respectively, with P(bqi = bqij) = pqij(π

q) and P(dqi = dqil) = pq
′

il (π
q), where

πq is a control signal that all agents in the qth population respond to. This control
signal is produced by the controller

Cq :

{
xCq(k + 1) = ACqxCq(k) +BCqeq(k),

πq(k) = CCqxCq(k) +DCqeq(k),
(9)

where xCq ∈ RnCq , nCq ∈ Z+ and eq(k) is the input to the controller.

For the qth population, let yq(k) =
∑Nq

i=1 y
q
i (k), noting that yq is a random variable.

Each population has its output filtered. Specifically, for q = 1, 2, . . . , Q, let ŷq be the
output of the filter

Fq :

{
xFq(k + 1) = AFqxFq(k) +BFqyq(k),

ŷq(k) = CFqxFq(k),
(10)

where xFq ∈ RnFq and nFq ∈ Z+. Next, we describe our large-scale interconnection
structure, which is depicted in Figure 2.

For p = 1, 2, . . . , Q, let

ep(k) = up(k)−
Q∑

q=1

Hpqŷq(k),

where each up(k) represents an external input, and each Hpq represents a matrix with
real, constant entries. (Specifically, Hpq has the same number of rows as ep and up,
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Figure 2. Feedback system containing many different populations of agents.

and the same number of columns as the transpose of ŷq, for all p = 1, 2, . . . , Q, and
all q = 1, 2, . . . , Q.) By letting ẽ(k) := [e1(k)T e2(k)T . . . eQ(k)T ]T , ũ(k) := [u1(k)T

u2(k)T . . . uQ(k)T ]T and ˜̂y(k) := [ŷ1(k)T ŷ2(k)T . . . ŷQ(k)T ]T , the interconnection
can be expressed in the compact form

ẽ(k) = ũ(k)− H̃˜̂y(k),

where H̃ is a block matrix whose elements are the Hpq. Let C̃ := diag(C1, . . . , CQ),
P̃ := diag(P1, . . . , PQ), F̃ := diag(F1, . . . , FQ), π̃(k) := [π1(k) π2(k) . . . πQ(k)]T

and ỹ(k) := [y1(k) y2(k) . . . yQ(k)]T . Then, in the manner of Theorem 3.1, we have
the following result.

Theorem 4.1. Consider the large-scale interconnection depicted in Figure 2, as de-
scribed in the preamble of Section 4, above. Assume that the ith agent in the qth
population of agents, Pq, has its state dynamics determined by the stochastic differ-
ence equations of (8), where Aq

i is a Schur matrix; and bqi and dqi are chosen, at each

time step, from the sets {bqij} ⊂ Rnq
i and {dqil} ⊂ R, respectively, according to Dini

continuous probability functions pqij(·) and pq
′

il (·), respectively, that verify (1). Suppose,

further, that the probability functions pqij(·) and pq
′

il (·) are bounded below by scalars that

are strictly greater than zero for all (i, j) or (i, l), as appropriate, and all πq ∈ Πq.
Then, for any Q stable controllers, C1, C2, . . . , CQ, as described by (9), and any Q
stable filters, F1, F2, . . . , FQ, as described by (10), the large-scale interconnection
converges in distribution to a unique invariant measure.

Proof: For all q = 1, 2, . . . , Q, set xq(k) := [xq1(k)
T xq2(k)

T . . . xqNq(k)T ]T , Ĉq :=

[cqT1 cqT2 . . . cqTNq ], bq := [bqT1 bqT2 . . . bqTNq ]T and dq := [dq1 dq2 . . . dqNq ]T . Then, let x̃(k)

:= [x1(k)T x2(k)T . . . xQ(k)T ]T , b̃ := [b1T b2T . . . bQT ]T and d̃ := [d1T d2T . . . dQT ]T .
Furthermore, let x̃F (k) := [xF1(k)T xF2(k)T . . . xFQ(k)T ]T and x̃C(k) := [xC1(k)T

xC2(k)T . . . xCQ(k)T ]T . Define the augmented state ξ(k) := [x̃(k)T x̃F (k)
T x̃C(k)

T ]T

whose dynamic behaviour is described by the difference equation

ξ(k + 1) = Aξ(k) + β,
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where

A :=

 Â 0 0

B̂F Ĉ ÂF 0

0 −B̂CH̃ĈF ÂC

 ,

Â := diag(A1
1, A

1
2, . . . , A

1
N1 , A2

1, A
2
2, . . . , A

2
N2 , . . . , A

Q
1 , A

Q
2 , . . . , A

Q
NQ), Ĉ := diag(Ĉ1,

. . . , ĈQ), ÂF := diag(AF1 , . . . , AFQ), B̂F := diag(BF1 , . . . , BFQ), ĈF := diag(CF1 ,

. . . , CFQ), ÂC := diag(AC1 , . . . , ACQ), B̂C := diag(BC1 , . . . , BCQ), 1 denotes row
vectors of appropriate dimensions containing 1’s as entries, 1̂ := diag(1, 1, . . . , 1)
and

β :=

 b̃

B̂F 1̂d̃

B̂Cũ(k)

 .

Observe that σ(A) = σ(Â) ∪ σ(ÂF ) ∪ σ(ÂC) and all of the matrices that comprise Â,

ÂF and ÂC are Schur matrices by assumption. The rest of the proof then follows in
the spirit of Theorem 3.1. ■

5. Simulations

To demonstrate Theorem 3.1, namely, the existence of a unique invariant measure,
irrespective of the initial conditions of the agents, the following toy experiment was
performed.

Populations 1 and 2 were created to consist of agents that could be either “On” or
“Off”; that is, each agent’s state at time k was permitted to take a value of either
1 (i.e., “On”) or 0 (i.e., “Off”). One could think of these populations of agents as
forming part of a broader scenario involving a digital labour platform, for example, in
which the first population consists of individual customers deciding “Yes” or “No” as
to whether to purchase a good or service at the currently offered price, and the second
population comprises of workers deciding “Yes” or “No” as to whether to accept jobs.
The total sizes of Populations 1 and 2 were set to 100 agents each. The Dini continu-
ous functions used to describe the probabilities of agents’ states being “On” according
to the controllers’ outputs are illustrated in Figure 3. For illustrative purposes, these
probability functions were selected such that their inflection points lie on the point
(0, 0.5). Note, however, that in a real application, one would typically derive the prob-
ability functions from real-world data on human behaviour. Moreover, the probability
functions illustrated in Figure 3 were chosen for their plausible sensibility as models
depicting the likelihood of agents’ responses being “Yes” or “No” based on the cost
or benefit to an agent: the more a good or service costs, the less likely a customer is
to say “Yes” to the purchase; while, the more a person is offered in terms of financial
incentive to work, the more likely they are to accept jobs.

One thousand simulations comprising the experiment were run in total. Each simu-
lation ran for 1,250 time steps, and the external inputs were set to u1 = u2 = 80 for all
simulation runs. At the beginning of each simulation run, the probabilities of agents
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Figure 3. Probability functions. The black line illustrates the probability of agents’ states from Population

1 being “On” as a function of π1. The blue line illustrates the probability of agents’ states from Population 2
being “On” as a function of π2.

from Populations 1 and 2, respectively, being initially “On”, were randomly generated
to demonstrate different initial conditions. Controllers 1 and 2, respectively, were lag
controllers that updated every time step, as described by the difference equations

π1(k) = β1π
1(k − 1) + κ1[e

1(k)− α1e
1(k − 1)],

π2(k) = β2π
2(k − 1) + κ2[e

2(k)− α2e
2(k − 1)],

respectively, where α1 = −0.1, β1 = 0.995, κ1 = 0.9, α2 = −12.0, β2 = 0.92, κ2 = 0.85
and k ∈ N. (For simplicity, the controller parameters, α1, β1, κ1, α2, β2 and κ2, were
tuned by trial and error. In a real application, more sophisticated techniques, such as
those introduced by Nazarov et al. (2024) incorporating artificial intelligence, could
be employed.) Filters 1 and 2, respectively, were moving average filters, as described
by the equations

ŷ1(k) = −0.5[y1(k) + y1(k − 1)],

ŷ2(k) = 0.5[y2(k) + y2(k − 1)],

respectively.

Figures 4 and 5 illustrate the average numbers of “On” agents from Populations
1 and 2, respectively, over time, from the 1,000 simulation runs. Figures 6 and 7
depict the mean outputs from Controllers 1 and 2, respectively, over time. Figures
8 and 9 illustrate the mean inputs to Controllers 1 and 2, respectively, over time.
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Convergence of the means in all cases is evident. The lag controllers did a reasonable
job at achieving small mean steady state errors (see Figures 8 and 9), noting that
the use of lag controllers was given preference over PI controllers due to the latter’s
potential to introduce instabilities. Note that the outputs of Controller 1 can be used
in association with the black line in Figure 3, and the outputs of Controller 2 can be
used in association with the blue line in Figure 3, to determine the probabilities of
agents’ states from Populations 1 and 2, respectively, being “On”.

Figure 4. Evolution of “On” agents from Population 1. The mean number of “On” agents is represented by

the blue line, while the orange shaded area indicates one standard deviation from the mean.

6. Applications

There has been much recent work on two-sided and multi-sided markets (e.g., by
Evans and Schmalensee (2016); Hagiu and Wright (2015); G. Parker, Van Alstyne, and
Jiang (2016); Weyl (2010) and most recently by Arnosti, Johari, and Kanoria (2021);
Ashlagi, Braverman, Kanoria, and Shi (2020); Benjaafar and Hu (2021); Kanoria,
Saban, and Sethuraman (2018); Liu, Zhang, and Zhang (2021); Möhlmann, Zalmanson,
Henfridsson, and Gregory (2021)), motivated by the success of the business models of
Uber Technologies, Inc. and Upwork Global Inc., following Jean Tirole’s pioneering
research (Rochet & Tirole, 2003, 2004a, 2004b, 2006). In general, one would like to
analyse the long-run properties of such markets, including their unique ergodicity
(Fioravanti et al., 2019; Ghosh et al., 2022; Kungurtsev et al., 2023; Mareček et al.,
2023) and fairness (Ghosh et al., 2022; Mareček et al., 2023) to individuals.

In the case of Uber Technologies, Inc., our results are reflected in the move from

10



Figure 5. Evolution of “On” agents from Population 2. The mean number of “On” agents is represented by

the blue line, while the orange shaded area indicates one standard deviation from the mean.

multiplicative surge pricing to additive surge pricing (Garg & Nazerzadeh, 2020).
Multiplicative surge pricing is not a stable controller in the sense of Theorem 3.1, and
unique ergodicity cannot be guaranteed. On the other hand, additive surge pricing is a
stable controller in the sense of Theorem 3.1 and unique ergodicity can be guaranteed.
See, also, Garg and Nazerzadeh (2020) for Uber’s own explanation of the move, based
on the multiplicative surge pricing not being incentive compatible in a dynamic setting.

Expanding upon Section 5, our simulation results can be interpreted as such a
two-sided market (albeit a simplified one): controller C1 suggests prices π1 (based
on the distance travelled and the so-called driver surge pricing (Cachon, Daniels, &
Lobel, 2017; Castillo, 2020; Castillo, Knoepfle, & Weyl, 2017; Chen, 2016; Garg &
Nazerzadeh, 2020) in Uber) to customers P1

i , whose requests y1i (k) for jobs (rides) at
time k are based on some internal state of each customer i at time k, x1i (k), which
is not directly observable. A controller C2 for the other side of the market matches
the jobs (rides) to workers (driver-partners) P2

i whose states x2i (k) at time k may
be partially observable (e.g., availability, position) and partially not observable (e.g.,
appetite for further work that day). Usually (e.g., Aouad and Saritaç (2020); Araman,
Calmon, and Fridgeirsdottir (2019); Özkan (2020); Simonetto, Monteil, and Gambella
(2019); Yan, Zhu, Korolko, and Woodard (2020)), C2 is implemented using an on-line
matching algorithm. Its matches are provided to workers (drivers), whose total number
y2(k) of accepted matches is then filtered to obtain the proportion of empty cars on
the road, which is then the input into the controller C1 that suggests prices with driver
surge pricing implemented, if there are too few empty cars.
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Figure 6. Output of Controller 1 versus time. The mean output is represented by the blue line, while the

orange shaded area indicates one standard deviation from the mean.

Further important applications lie within multi-sided platforms (Evans &
Schmalensee, 2016; Hagiu & Wright, 2015; Weyl, 2010) and networked markets
(G. Parker et al., 2016). To continue our ride-hailing example, one could see the ride-
hailing system of Uber as a multi-sided market if one also considers “fleet partners”
(who are intermediaries for car manufacturers and car leasing providers) and taxi op-
erators. Indeed, Uber’s Vehicle Solutions Program is a platform for fleet partners to
offer their vehicles to driver-partners. Drivers, in turn, sometimes happen to work also
as licensed taxi drivers.

Similarly, Google’s Android ecosystem and Microsoft’s Windows ecosystem are
sometimes seen (Hagiu & Wright, 2015; G. G. Parker, Van Alstyne, & Choudary,
2016) as three-sided platforms connecting consumers, software providers, and hard-
ware providers. While some of the incentives offered to independent software providers
(e.g., free hardware samples, no-cost licenses of development tools) are not being ad-
justed in real-time, others (e.g., promotions for their apps) are. The details of the
control mechanisms have not been made public in this case.

7. Conclusions

In feedback control systems, a demanding area for further study is the control of en-
sembles of agents. In practice, an example involving multiple ensembles of agents is an
online labour platform (Möhlmann et al., 2021). See, also, the work of Scheid, Boursier,
Durmus, Moulines, and Jordan (2025). There are two main differences between control
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Figure 7. Output of Controller 2 versus time. The mean output is represented by the blue line, while the

orange shaded area indicates one standard deviation from the mean.

problems involving ensembles versus classical control problems. First, although these
ensembles generally are too large to allow for a microscopic approach, they are not suf-
ficiently large to allow for a meaningful fluid (mean-field) approximation. Second, the
regulation problem concerns the ensemble and the individual agents; a certain quality
of service should be provided to each agent. We have formulated this problem as an
iterated random function (Diaconis & Freedman, 1999; Ghosh & Marecek, 2022) to
design an ergodic control which is the key to delivering the expected quality of service
to the agents across the network.

Future work in this area can be undertaken in multiple directions. First, more elab-
orate use cases, compared to the example demonstrated in Section 5, can be explored.
Second, of both theoretical and practical interest is a more in-depth study of time
delays and any effects of these on the results. Generally speaking, it is well-known
that time delays can impact a closed-loop system’s stability and performance and,
in the classical control sense, strategies for mitigating time delay effects remain an
active area of research. Finally, while it was demonstrated in Theorems 3.1 and 4.1
that convergence in distribution to a unique invariant measure is guaranteed in regard
to the closed-loop interconnections, it is worth noting that we still know relatively
little in terms of further information about this convergence; for instance, how long
the mixing time will be. Answers to such questions may help to inform more tailored
and intelligent control design. Thus, the three aforementioned areas of future work are
the subject of current explorations.
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Figure 8. Input to Controller 1 versus time. The mean input is represented by the blue line, while the orange

shaded area indicates one standard deviation from the mean.
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