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Abstract—We consider the design of distributed algorithms that
govern the manner in which agents contribute to a social
sensing platform. Specifically, we are interested in situations
where fairness among the agents contributing to the platform
is needed. A notable example are platforms operated by public
bodies, where fairness is a legal requirement. The design of
such distributed systems is challenging due to the fact that
we wish to simultaneously realise an efficient social sensing
platform, but also deliver a predefined quality of service to
the agents (for example, a fair opportunity to contribute to the
platform). In this paper, we introduce iterated function systems
(IFS) as a tool for the design and analysis of systems of this
kind. We show how the IFS framework can be used to realise
systems that deliver a predictable quality of service to agents,
can be used to underpin contracts governing the interaction of
agents with the social sensing platform, and which are efficient.
To illustrate our design via a use case, we consider a large,
high-density network of participating parked vehicles. When
awoken by an administrative centre, this network proceeds to
search for moving missing entities of interest using RFID-based
techniques. We regulate which vehicles are actively searching
for the moving entity of interest at any point in time. In
doing so, we seek to equalise vehicular energy consumption
across the network. This is illustrated through simulations of a
search for a missing Alzheimer’s patient in Melbourne, Australia.
Experimental results are presented to illustrate the efficacy of our
system and the predictability of access of agents to the platform
independent of initial conditions.

Index Terms—Smart Cities, Internet of Things (IoT), Social
sensing, Radio Frequency Identification Systems, Ergodicity,
Control theory.

I. INTRODUCTION

In many applications, a physical phenomenon can be sensed by
collecting data collaboratively [2–12], either from humans di-
rectly, or from devices acting on their behalf. This is variously
known as (spatial) crowdsourcing [2, 13, 14], (mobile) crowd
sensing [15, 16], or social sensing [17, 18]. Often, there are
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more humans and their devices that could contribute to the
platform than the platform can utilize at any given time. In
such situations, it may be desirable that the algorithms that
govern the sensing process have certain properties such as fair
and predictable distribution of the work among agents. These
requirements are becoming very important and arise in many
situations:

• For example, in applications where the platform is op-
erated by a branch of a government, which often has a
legal requirement to ensure fair and equitable treatment of
citizens. In many such situations, the rights of sub-groups
and their representation in the sensing platform must be
considered in the mechanism-design process. One may
think of this as akin to ensuring the ability of citizens to
vote in a voting system.

• Another example arises in applications where there are
certain types of incentives on offer. In such situations,
one is interested in ensuring that agents have an equal
chance to avail of these incentives. Often, this is a legal
requirement (e.g., stemming from lottery regulations).

• A further example occurs in applications where written
contracts between the participants and the platform are
issued, which should involve guarantees of fairness of
predictability as some quality-of-service measures.

• Finally, the same requirements arise in situations where
fair and predictable access is mandated for legal or
other reasons. Among others, the European Commission
[19] aims to regulate certain “high-risk” AI applications.
For example, when participants report pollution levels
in a neighbourhood and this information is then used
to route vehicular traffic, a sensing platform may be
legally required to provide a fair and predictable access
to participants from all neighbourhoods, to make sure
that certain neighbourhoods do not see excessive traffic
due to their under-representation in the pollution-sensing
scheme.

Generally speaking, fairness issues have not yet been widely
considered in the context of the design of social sensing
systems. Typically, in social sensing systems, information and
actuation capabilities are crowd-sourced to generate function-
ality to control and influence ensemble behaviour, with the
primary objective often being the efficiency of the platform,
frequently with some privacy guarantees. Examples of such
situations in smart-city applications include sensing to detect
and allocate parking spaces, electric charge points, or as we
have mentioned, ambient pollution in cities. While prior papers
deal with many aspects of crowd-sensing problems, most have
focused on the design of efficient crowd-sensing systems.
Efficient could mean, for example, systems that minimize
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Figure 1. Basic setting. There are more potential participants than a
crowdsensing platform will need to use on a given day. The platform selects
the participants, processes their answers, and depending on some reference
signal, may invite further participants.

energy consumption, or have the smallest pollution footprint.
Our interest in this paper is somewhat different and stems
from a desire to develop systems that are not only efficient,
but in which agents’ rights to contribute to the platform are
characterised by certain fairness and predictability constraints
(perhaps out of economic or legal considerations). As we have
mentioned, in many such situations, the rights of sub-groups
and the representation in a sensing platform must be coded as
part of the algorithmic design process.
Often, in such systems, a feedback signal is also used to
regulate the number of participants contributing to the social-
sensing platform at any given time. For example, in many
situations, a generalisation of a price signal could be used to
encourage/discourage agents to contribute to a crowd-sensing
platform. In other situations, we might wish to regulate the
number of participants contributing to a task to minimize
energy consumption. The architecture of such systems is
depicted in Figure 1.
Designing sensing systems of this form is challenging. Clearly,
we wish to allocate access to the sensing platform in a manner
that is not wasteful, which gives an optimal return on the use
of the resource for society, and which, in addition, gives a
guaranteed level of service to each of the agents competing
for that resource. Roughly speaking, when we design such
systems, we seek to meet the following objectives.

• Our first objective is to solve the regulation problem. For
example, we may wish to ensure that a certain number
of agents contribute to the sensing platform at any time
(for example, to minimize the monetary burden on the
sensing system provider, or to minimize the utilization of
some shared communication links).

• Second, we would then like to develop sensing systems
with the optimal behaviour. In the above example, we
might select agents that have a lower energy footprint in
measuring sensing data.

• The third objective focuses on the effects of the control
on the microscopic properties of the agent population.
In particular, we may wish that each agent, on average,
receives a fair opportunity to contribute data to the
platform, or at a much more fundamental level, we may
wish the average allocation access to the platform for

each agent over time is a stable quantity that is entirely
predictable, and which does not depend on the initial
conditions. The need for fair access to the resource may
arise for a number of reasons. For example, agents may
have paid to write to the platform, or may even be
mandated as part of some legal requirement. [20]

The first two of the above objectives are classical control
theoretic objectives. The third is somewhat new, even in the
context of control engineering. In what follows, we shall show
that all three objectives can be met in the design of our crowd-
sourcing algorithms. To do this, our principal tool will be
to develop techniques, whereby we establish conditions that
guarantee ergodicity. Specifically, by ergodicity we mean the
existence of a unique invariant measure, to which the system
is attracted in a statistical sense, irrespective of the initial
conditions. Thus, the design of systems for deployment in
multi-agent applications must consider not only the traditional
notions of regulation and optimisation, but also the guarantees
concerning the existence of a unique invariant measure. This
is not a trivial task and many familiar strategies fail. Specif-
ically, our principal contribution in this paper is to develop
a framework for reasoning about fairness in social sensing
in the sense of guaranteeing that the number of queries per
participant will be equalised among comparable participants,
in expectation, even when the population of participants varies
over time. A prerequisite for fairness is predictability in the
sense of guaranteeing that the expected number of queries per
participant is independent of the initial state.

Various notions of fairness could then be devised and enforced
by shaping the so-called unique invariant measure for a related
stochastic system, although we demonstrate only the use of
one particular notion of fairness in this paper.

In particular, we develop a meta-algorithm for social sensing
in a time-varying setting, for which we prove guarantees of
predictability and fairness by reasoning about the existence
of a unique invariant measure for a related stochastic system.
We believe that our work is one of the first to deal with this
problem in a social-sensing context.

Comment: Before proceeding, we remark that the
aforementioned notions of ergodicity and invariant measure
are very precise technical terms grounded in the theory of
stochastic processes. However, we emphasize that our interest
in these concepts is entirely practical. Establishing conditions
for an invariant measure is the tool we use to prove that a
particular algorithm is ergodic. Ergodicity implies two basic
things in the context of a stochastic system. First, it means
that the initial conditions do not matter in the long run.
Thus, it imbues the notions of predictability and fairness
in the context of any given algorithm, both of which are
important for writing economic contracts. Second, it means
that simulations can be trusted. In many cases, the algorithms
that we develop give rise to complicated stochastic systems
and simulations are often our only tool to understand them.
Ergodicity implies that such simulations can be trusted.



Figure 2. An illustration of the RFID-based system, following [1]. (Some
sub-images obtained from Openclipart [21, 22].)

A. A motivating application

As a motivating application, consider the situation when an
entity, such as a material object or a pet, goes missing.
Considering that objects, pets, and even people go missing
every day, there exist methods and systems in place to facil-
itate the location of missing entities. For example, computer
applications allow us to track missing or stolen smartphones.
Pets can be micro-chipped or equipped with “smart” collars.
Medical jewellery and community support networks exist to
aid people with needs who wander, including Alzheimer’s
patients [23], find their ways back home. Looking towards
the future, the emergence of the Internet of Things (IoT)
may allow for the automation of the search, and therewith,
improved response times.
For instance, in the context of IoT, the vehicles that we drive
are becoming connected to each other, to the infrastructure,
and to the Internet [3, 6]. With expanding on-board sensing,
computing, and communication capabilities, parked cars no
longer need to be idle, to be of no service to us during the
extended periods when they are not being driven. Recently,
[6, 24, 25], the use of networks of parked vehicles in dense ur-
ban areas has been suggested for the detection and localisation
of moving, missing entities using RFID technology [26]. From
these preliminary studies, a key question arises: How can we
distribute the searching agents to quickly locate the moving,
missing entity, while also reducing the redundancy, and thus
increasing energy efficiency in the system? One approach to
designing such a system would be as follows. Technically, we
consider a feedback loop wherein the administrative centre
broadcasts a signal to all agents capable of participating in
social sensing. The agents respond to the signal stochastically
and thereby alter the state of the system. The administrative
center observes a filtered aggregate state of the system, and
the process repeats. In the example of an urban centre with the
aim of regulating the number or density of cars looking for
a missing, moving entity efficiently, the administrative center
may be the municipality or police force. Probabilistic models
of each vehicle switching on or off their RFID reader corre-
spond to the numbers of each vehicle’s neighbours that are
also capable of participating, and this is obtained by sending

out a “ping” and observing the responses. The agent uses the
broadcast signal from the administration centre, together with
the relevant probability model deduced by the number of his
or her neighbours, to “flip a coin” and determine whether to
“Switch On” its RFID reader over the next time interval or
not. This process is repeated for subsequent time steps.

B. Specific contributions

This paper builds on three pieces of our earlier work
[1, 25, 27]. The first paper [25] concentrated on simulating a
specific case of locating an Alzheimer’s patient in inner-city
Dublin using RFID readers installed in parked cars. That
first work considered all parked cars within a certain area
would be awoken by a central authority and attempt to
locate the missing entity. While simulations have shown
that this approach can be highly effective in finding a
missing entity, turning all cars on for detection within a
given time interval may deplete the participants’ batteries
without improving coverage substantially, as clustering cars
have similar information to report at that given time frame.
Moving towards a more efficient way of turning cars’ sensors
on or off, the second paper [1] addresses this problem by
proposing a stochastic algorithm for regulating the number
of cars turned on for searching in which each car would
randomly decide its status based on the number of detected
neighbouring vehicles. Indeed, cars with many neighbouring
vehicles may be less likely to turn their sensors on as it is
probable that at least one of the cars in the cluster will turn its
sensor on. On the other hand, cars with fewer neighbouring
vehicles must have their sensors almost always on as there
is a low probability that they can rely on their neighbours
to cover that specific area. Simulations have pointed out
that similar results to the ones provided in the first paper
can be achieved with significantly fewer ‘active’ vehicles at
each time frame. The foundation of this stochastic algorithm
is described in [27] and is based on a feedback model,
in which a population of agents is regulated by a central
authority, the controller. In that reference, the ergodicity of
the closed-loop system dynamics is sought, as this rather
theoretical property is closely related to predictability and
fairness in practice. This paper further extends these papers
by revisiting the algorithmic aspects of the design, and by
extending the application scenario to a more extensive use
case. As before, we are interested here in the ergodicity of the
feedback system as a prerequisite to writing contracts and to
provide fairness guarantees to individual agents. Specifically,
the work presented in this current paper expands upon our
previous work significantly, as follows.

A. We present a framework for reasoning about the
predictability and fairness of regulating task distribution
in social sensing. We introduce iterated function systems
as a tool for addressing such issues in the context of
social sensing.

B. We develop conditions that ensure predictability and
fairness, even when there are small deviations in the



probabilistic models over time (this scenario is not
considered in [27]).

C. We expand upon the motivating application of searching
for a missing person with illustrations from simulations
from Melbourne, Australia. The new simulations
corroborate our analysis: using Algorithm 2, “Switching
On” or “Off” of the RFID readers per participant over
time is, indeed, independent of the initial state and does
exhibit weak convergence [28].

In terms of contributions to the field of social sensing, to
the best of our knowledge, this work is the first to develop
analytical tools for the design of social sensing platforms that
guarantee predictability and certain notions of fairness. This
builds on the use of iterated function systems to both model
and design such systems. A further contribution to the general
field is to use these systems to study the robustness of these
systems to uncertainties, and to apply them to the design of a
social sensing platform.

C. Paper Organisation

The paper is structured as follows. In Section II, we provide
an overview of related work both in social sensing and
control theory. In Section III, we formalise the problem
of predictability and fairness mathematically and present
our main algorithmic results. In Section IV, we develop a
mathematical framework for establishing the robust ergodic
properties of social sensing systems. Finally, in Section V-B,
we demonstrate the utility of our results by revisiting the
use case of a missing Alzheimer’s patient. Conclusions and
future work are presented in Section VI and supplementary
mathematical results are presented in the Appendix.

II. RELATED WORK

A. Social sensing

There exists extensive literature on social sensing, as surveyed
in [17, 18]. Much of the early work has been empirical and
exploratory in nature; e.g., [2, 5]. More recently, however,
rigorous analyses have started to appear. The authors of
[7] consider credibility estimation and [29] set the study in
context. [30] proposed various likelihood-based inference
algorithms and bound their performance. [10] combined
both efforts in a time-sensitive setting. A number of studies
[12, 13, 31–36] analysed privacy in this context, as surveyed
in [37]: [31] consider k-anonymity and [32, 34, 36] consider
differential privacy, for instance. A related stream of work
considers distributed and secure storage technologies such as
blockchain [38] and location-privacy therein [39]. This hints
at the maturity of the field.

Numerous applications have been developed, ranging from
the detection of pot holes [40], and crowdsourced traffic
monitoring (Nericell [41], Waze, or Google Live Traffic
[42]), road-traffic delay estimation (Waze, VTrack, or Google

Live Traffic [42]), understanding of traffic accidents [5],
pollution [43], and generation of fine-grained noise maps
[44, 45], to the search for missing entities [6, 24, 25, 46–48]
such as stolen bicycles [46], lost children [47, 48], and
Alzheimer’s patients [25]. Most recently, social sensing has
found applications in sensing within the COVID-19 pandemic
[49]. Indeed, most track-and-trace approaches, e.g., [50], can
be seen as a form of social sensing. We refer to [51] for a
nice overview of the classical applications.

In this paper, our focus is on the search for missing entities
[6, 24, 25], where, similarly to other vehicle-based approaches
[38, 41], task allocation impacts participants’ automotive bat-
teries, where the adverse impact is small, but measurable. Our
techniques can be applied more broadly, though. In general,
applications of social sensing, wherein allocated tasks may
have an adverse impact on the participants, however small,
may benefit from fairness considerations the most. Consider,
for instance, requiring the driver of a vehicle to focus on
the small screen, which may impact road safety, or repeated
queries concerning symptoms in medical applications, such as
queries as to whether their heads ache in [49], where such
“priming” may change perceptions of the symptoms.

B. RFID-based approaches for the search for missing entities

Regarding the specific example of agents searching for missing
entities, the RFID-based system described in [6, 24, 25],
and illustrated in Fig. 2, was envisioned as follows. Each
participating parked vehicle comprised of an RFID reader
and an antenna on board, and was able to communicate
with an administrative centre. The potentially missing entity
was presumed to be carrying an RFID passive tag via some
means; e.g., a wrist band. If the entity went missing, an
alarm would be raised with the administrative centre. For
example, the entity’s carer or owner places a phone call
to the police. Once the alarm is raised, the administrative
centre prompts the application on board the parked vehicles.
The RFID technology enables those vehicles to attempt to
locate the missing entity, and to inform the administrative
centre when it is found (i.e., when the RFID equipment on
board a parked vehicle detects and processes the presence of
the unique RFID passive tag carried by the missing entity).
Finally, once detected, the administrative centre then invokes
a procedure aimed at making contact with the missing entity.
For example, the police may go to the location at which the
entity was detected to refine the localisation and, if required,
help the entity on its way home. See [6, 24, 25] for further
details and [26] for a survey of related work in social sensing
with RFID technologies. Investigations conducted in [25] con-
cerning demonstrating the efficacy of the RFID-based system
were purely simulation-based. The system was demonstrated
through a use case scenario of a missing Alzheimer’s patient
in inner-city Dublin, Ireland. For the simulations, system pa-
rameters were varied, including: (i) the percentage of parking
spaces on the map of Dublin that were inhabited by vehicles
participating in the service; (ii) the polling rate of the RFID
equipment on board the participating parked vehicles; and (iii)



Figure 3. A feedback model employed in [1] and here.

the RFID equipment’s detection range. Results were presented
from thousands of simulations and consisted of: (a) the average
time that it took for the network of participating parked
vehicles to detect the moving pedestrian; and (b) the number
of times that the system failed to detect the pedestrian within
a thirty-minute time frame. An interesting (albeit expected)
observation that the results revealed was one of redundancy,
in that the average detection times, and the “failed to detect”
totals, followed curves resembling the exponential. That is,
the average detection time, and “failed to detect” results,
remained relatively constant until a “threshold” participation
percentage was reached. When the number of parking spaces
inhabited by searching vehicles fell below these thresholds, the
detection times, and especially the “failed to detect” totals,
increased sharply. These observations of redundancy over
certain thresholds led to the question of how to distribute the
searching agents to quickly locate a moving, missing entity,
while also reducing redundancy (and thus increasing energy
efficiency) in the system; and thus inspired the preliminary
work of [1], in which the application of control theory to the
motivating problem was first considered.

C. Ergodic properties of the associated closed-loop systems

The issue of ergodicity has also become topical in the area
of control theory [27, 33, 52–55]. Indeed, some of the work
presented in this present manuscript builds on [27, 54]. These
papers develop an abstract framework, blending practical as-
pects of intelligent transportation systems, smart cities, and
techniques from classical control theory. To see the connec-
tions to this work, consider a resource allocation problem in
discrete time. In particular, consider the closed-loop system
as depicted in Fig. 3, which comprises a (typically large)
number of agents, a controller, and a filter. The controller,
C , broadcasts a signal π(k) at time k; the N agents amend
their use of a shared resource in response. The use xi(k) of the
resource by agent i at time k is modelled as a random variable,
as there is an inherent randomness in the reaction of each agent
to the broadcast signal. The main design task is to regulate the
aggregate resource utilisation y(k), which sums the random
variables xi(k) modelling the individual allocation across all
agents i at the given time k. In this setting, the controller
usually does not have access to either xi or y, but only to an
estimate ŷ of y, which is the output of a filter F . In addition to

achieving regulation, the controller should also ensure that the
agents have a sense of fairness and predictability. In control-
theoretic terms, this can be cast as a particular flavour of
the ergodicity of the closed-loop system dynamics, known
as the existence of a unique invariant measure [27, 54]. This
completely removes the effects of initial conditions in the long
run. Overall, in the aforementioned references, the authors
state the conditions for the unique ergodicity of the closed
loop with linear controllers and filters:

Theorem 1. [54, Theorem 3] Consider the feedback system
depicted in Fig. 3, for some given finite-dimensional linear
systems C and F . Assume that each agent i ∈ {1, . . . , N}
has state xi(k) governed by the following affine stochastic
difference equation:

xi(k + 1) = wij (xi(k)) , (1)

where the affine mapping wij is chosen at each step of
time according to a Dini-continuous probability function
pij(xi(k), π(k)), out of

wij(xi) = Aixi + bij (2)

where Ai is a Schur matrix and for all i, π(k),∑
j pij(xi(k), π(k)) = 1. In addition, suppose that there exist

scalars δi > 0 such that pij(xi, π) ≥ δi > 0; that is, the
probabilities are bounded away from zero. Then, for every
stable linear controller C and every stable linear filter F , the
feedback loop converges in distribution to a unique invariant
measure.

This theoretical framework will be exploited and extended in
the sequel to devise our social sensing solution. For now, there
are some key aspects on this framework and specifically on
the previous theorem that should be pointed out and discussed.
Note first that the agents’ dynamic behaviour may seem rather
limited, but it suffices for several smart-cities applications,
such as applications with ‘on-off’ participants; the reader may
see [27] for extensions to the nonlinear case. Note also that
the main design task in the linear setting described above is
to devise two stable linear time-invariant systems (a filter and
a controller) so that the closed-loop dynamics are stable. This
ensures ergodicity and, thus allows for fairness. Finally, it is
important to point out that the probabilities involved in the
dynamic response of the agents with respect to the broadcast
signal must be bounded away from zero. The lack of this
assumption can yield non-ergodic stochastic processes, and in
this case some agents may monopolise allocated resources.

III. PROBLEM STATEMENT

Let us revisit the closed-loop schema of Fig. 3, where there
are N ∈ N agents S1, . . . ,SN , whose aim is to estimate the
state evolution of some underlying system. These N agents
are regulated by a controller C using broadcast signal π(k),
at time k ∈ N, which affects the agents’ participation in the
sensing scheme. The state of each agent i at time k is captured
by xi(k), which can be univariate or multivariate.
For example, the state xi(k) at time k could be in the set
{0, 1}, which would suggest whether agent i allows for the



participation in social sensing (xi(k) = 1) or not (xi(k) =
0). In this case, at each time instant k, agent i may have a
probability pi1 of being on and a probability pi0 of being off
at the following time step. Both probabilities may depend on
the broadcast control signal π; that is,

P(xi(k + 1) = 1) = pi1 (π(k)) (3)

and, thus,

P(xi(k + 1) = 0) = pi0 (π(k)) = 1− pi1 (π(k)) , (4)

since both events are complementary. More generally, we
could consider a family of response functions {wσ}Nσ=1, with
probability functions {pσ(x)}Nσ=1 where

pσ(x) : X → [0, 1],

N∑
σ=1

pσ(x) = 1,

and agent i selects σ according to the state-dependent proba-
bilities

pi(xi(k)) = (pi1(x
i(k)), . . . , piN (xi(k))). (5)

While there is some inherent randomness in the reaction
of each agent to the broadcast signal, increasing the value
of π should increase the probabilities of participation and
likewise lowering π should induce agents to stop participating,
eventually.
Finally, based on the participation of the agents, the controller
has access to a filtered aggregate of observations ŷ(k), with
some delay (z−1), possibly after subtracting a reference value
r to obtain the error e(k). The error e(k) is then used to
produce the broadcast signal, thus closing the loop. See, also,
Algorithm 1 on Page 7.
Informally, predictability requires that, for each agent, there
exists a limit on the long-run average of the agent’s state,
and that this limit is independent of the agent’s initial state.
Fairness, consequently, requires that this limit coincides for all
agents. Formally:

Definition 1 (Predictability). Whenever, for each agent i, there
is an agent-specific constant ri such that the following limit
exists:

lim
k→∞

1

k + 1

k∑
j=0

xi(j) = ri, a.s., (6)

i.e., a long-run average of agents’ states independent of the
initial state xi(0), we say the system is predictable.

Next, fairness in the sense of statistical parity [56] requires
the limits of (48) coincide for all agents i.

Definition 2 (Fairness). Whenever there exists a finite constant
r such that:

lim
k→∞

1

k + 1

k∑
j=0

xi(j) = r, a.s., (7)

for all agents i, we say that the system is fair.

Notice that this notion of fairness is rather strict. One may
equally well consider simpler notions of fairness, perhaps
summing over only certain coordinates of the multivariate state

variable, or considering a fixed numerical threshold:

Definition 3 (ε-fairness). Based on (6) and (7), we define the
predictability and fairness vectors for some r ∈ R as follows:

p̂ = (r1, r2, . . . , rn)
> ∈X ⊆ Rn, (8)

f̂ = r.1>, where 1> = (1, 1, . . . , 1)
> (9)

and, for some small ε > 0 and any vector norm ‖ · ‖ in Rn,
we say that the system is ε-fair if we have E

(
‖p̂− f̂‖

)
≤ ε.

Note that this definition does not imply the existence of a
protocol that could ensure ε-fairness of the system for any
input. Indeed, however large the value of ε, and however fast
the convergence of the algorithm schema for social sensing, a
scenario can be created to violate the ε-fairness. Furthermore,
note that while in some smart-cities applications, one may
assume that the probabilistic model is time-invariant, most
social-sensing problems feature a time-varying population, and
this can be challenging from a theoretical perspective. For
instance, in our application, the missing entity may move
quickly (e.g., using the underground) and the number of parked
cars in each agent’s surroundings may change slowly.
In such a time-varying setting, two complications arise. First,
the efficient task allocation [57, 58] (e.g., search efficiency
in our motivating application) becomes computationally in-
tractable [59] when the probabilistic models are allowed to
vary arbitrarily. More formally, the approximation to any non-
trivial factor with respect to the number of queries is com-
plete for polynomial-space Turing machines [60]. (This relies
on the equivalence with the so-called restless multi-armed
bandit problem [61, 62], a well-known problem in applied
probability.) Hence, any social sensing scheme assuring search
efficiency is computationally complex, independent of whether
P equals NP, and in turn, predictability and fairness are as
much as we can hope for. Second, the analysis of predictability
and fairness becomes rather non-trivial. We address these
complications with tools from stochastic analysis and control.
Both predictability and fairness can be defined in terms of the
properties of an associated stochastic model, which is known
as an iterated function system (cf. Definition 4 in the next
section). When the probabilistic model does not change over
time, predictability is assured by the existence of a unique
invariant measure (cf. Definition 6 in the next section). When
we cannot rely on the probabilities and transformations in the
iterated function system being invariant over time, or perfectly
known to us, there are still at least two options. Either we
can consider the notion of piece-wise stationary measures
[63] for a time-varying iterated function system [63], or we
can consider perturbation analysis, also known as sensitivity
analysis. There, it is of interest to know whether a perturbation
in the state causes a large difference in the behavior of the
corresponding stochastic process. In our class of contractive
transformations, we show in Theorem 2 that small perturba-
tions in the state or probabilities do not cause large changes
in the behavior, in terms of the long-run average state. This
means that we can use linear or other approximations without
changing the invariant measures too much.



Data: Number of agents N ; initial state xi(0) ∈X
for each agent i; a set of possible behaviours
{wτ}τ valid for any agent, to be chosen with
agent- and state-dependent probability; number t
of time steps between perturbations; time
horizon t ≤ T of time steps; a bound δ on the
rate of the environment-driven change per t
time steps.

Initialise counters s← 0, h← 0, where (s, h)
considered lexicographically captures time ;
Central authority broadcasts arbitrary signal π(0),

such as 0 ;
while s · h ≤ T do

while h ≤ t do
for each agent i do

Agent i calculates state-dependent
probabilities pi(xi(st+ h)) =
(pi1(x

i(st+ h)), . . . , piN (xi(st+ h))).;
Agent i selects response function wσ ,

where σ is chosen according to to the
probabilities pi(xi(st+ h));

Agent i updates state xi(st+ h+ 1) using
xi(st+ h+ 1) = wσi

h
(xi(st+ h)), i.e.,

according to (3);
end
Central authority observes filtered aggregate

state ŷ(st+ h), where the filter F is possibly
not known a priori ;

Central authority computes the error e(st+h) ;
Central authority broadcasts signal π(st+ h)
computed using some controller C and
increments h to h+ 1;

end
The environment perturbs the state of agents such

that |xi((s+ 1)t)− xi(st+ h)| ≤ δ and
increments s to s+ 1.

end
Algorithm 1: An algorithm schema for social sensing with
fairness guarantees

IV. MAIN RESULTS

To address predictability and fairness in social sensing rig-
orously, we present a result which is applicable for a class
of stochastic phenomena which can be modelled as iterated
function systems. This result then makes it possible to model
small variations in the response of the participants within
a social sensing scheme, which is a stepping stone towards
analyses of a time-varying response of a population.

A. A class of stochastic systems

Let us define the class of systems we consider formally:

Definition 4 (Iterated function system with state-dependent
probabilities [64]). Let X ⊆ Rn be closed, and let ρ be a
metric on X such that (X , ρ) is a complete metric space.
Let {wσ}Nσ=1 be transformations on X and {pσ(x)}Nσ=1 be

probability functions defined on Borel sigma-algebra B(X ),
such that, for all σ ∈ [1, N ],

pσ(x) : X → [0, 1] and
N∑
σ=1

pσ(x) = 1.

The pair of sequences

(w1(x), w2(x), . . . , wN (x); p1(x), p2(x), . . . , pN (x)) (10)

is called an iterated function system (IFS).

Informally, the corresponding discrete-time Markov process
on X evolves as follows: Choose an initial point x0 ∈ X .
Select an integer from the set [1, N ] := {1, 2, . . . , N} in such
a way that the probability of choosing σ is pσ(x0), σ ∈ [1, N ].
When the number σ0 is drawn, define

x1 = wσ0
(x0).

Having x1, we select σ1 according to the distribution

p1(x1), p2(x1), . . . , pN (x1),

and we define

x2 = wσ1(x1),

and so on.
Let us denote νk for k = 0, 1, 2, . . . , the distribution of xk,
i.e.,

νk(A ) = P(xk ∈ A ) for some A ∈ B(X ). (11)

The above procedure can be formalized for a given x ∈ X
and a Borel subset A ∈ B(X ), we may easily show that the
transition operator for the given IFS is of the form:

ν(x,A ) :=

N∑
σ=0

1A (wσ(x)) pσ(x), (12)

where ν(x,A) is the transition probability from x to A and
where 1A denotes the characteristic function of A :

1A (x) :=

{
1 if x ∈ A .

0 if x ∈ A c.
(13)

where, in turn, A c denotes the complement of the event or
the Borel subset A .

Definition 5 (Markov operator [65]). Closely connected with
this transition probability is the Markov operator, denoted by
P , defined on the space of all real or complex valued Borel
measurable maps f on X as:

Pf(x) =

∫
X

f(y)ν(x, dy) (14)

Definition 6 (Invariant probability measure [65, 66]). If a
Markov chain {Xk} moves with transitional probability (12),
then it is of great interest to know the existence of an
invariant probability measure for the chain, i.e., existence of a
probability measure ν? ∈M (X ), for which:

ν?(A ) =

∫
A

ν(x,A )ν?(dx) ∀A ∈ B(X ). (15)



In our analytic approach, we consider the dual of Markov
operator P defined in (14),

(P ?ν)(A ) =

∫
X

ν(x,A )ν(dx), (16)

a map defined on the space of all Borel measures on X . A
probability measure ν? is called invariant probability measure
for the Markov chain {Xk} with Markov operator P if and
only if

P ?ν?(A ) = ν?(A ) ∀A ∈ B(X ). (17)

We finish this preliminary section of mathematical definitions
and set up by defining a useful metric on the space of
probability measure on X , due to Kantorovich and Rubinstein
[67–69], also known as Wasserstein-1 distance.

Definition 7 (Wasserstein-1 distance; Remark 6.5, p. 95 in
[69]). Let L1 denote the space of all Lipschitz maps with
Lipschitz constant 1, i.e

L1 = {f : X → R : |f(x)− f(y)| ≤ ρ(x, y) ∀x, y ∈X }.

For ν1, ν2 ∈ M (X ), Wasserstein-1 distance between these
two probability measure is denoted by W1(ν1, ν2) and is given
by:

W1(ν1, ν2) = sup
f∈L1

[∫
fdν1 −

∫
fdν2

]
. (18)

B. The main result

For a given iterated function system, the following result
provides a bound on the distance between its original invari-
ant measure and the invariant measure obtained when it is
perturbed. From a practical viewpoint, this bound ensures that
small perturbations in the IFS parameters do not cause large
changes to its long-run behaviour.

Theorem 2. Let P ?1 be the Markov operator [65] of an iter-
ated function system (w1(x), . . . , wN (x); p1(x), . . . , pN (x))
with invariant measure ν?1 , and let P ?2 be the Markov
operator of the perturbed iterated function system
(w′1(x), . . . , w

′
N (x); p′1(x), . . . , p

′
N (x)) with invariant

measure ν?2 . Then, for all x ∈ X , we have the following
estimates of distance between the invariant measures in
Wasserstein-1 distance (18):

W1(ν
?
1 , ν

?
2 )

≤ 1

1− r

(
r′
∑
σk

pσk
(x)
∥∥∥wσk

(x)− w′σk
(x)
∥∥∥
∞

+ βη

)
(19)

where
(a) 0 < r < 1, is a contraction factor for the Markov

operator in W1 metric,
(b) σ0, σ1, σ2, . . . are i.i.d discrete-random-variable taking

values in {1, 2, . . . , N},
(c) η is the bound on the perturbation in probabilities, i.e.,∑

σk

‖pσk
(x)− p′σk

(x)‖ ≤ η,

(d) β is a bound for the real-valued continuous function w ∈
Cb(X ,R),

(e) ‖w(x)−w(y)‖ ≤ r′‖x− y‖, for some r′ and for almost
all x, y ∈X .

The proof is included in the Appendix.

C. A perturbation analysis in the time-invariant setting

Theorem 2 makes it possible to reason about small changes to
the behaviour of participants in a social sensing scheme. This
can be seen as a perturbation analysis or stability analysis for
iterated function systems:

Corollary 1. Consider the feedback system depicted in Fig.
3, for some given finite-dimensional linear systems C and
F . Assume that each agent i ∈ {1, . . . , N} has state xi(k)
governed by the following affine stochastic difference equation
(1) where the affine mapping wij is chosen at each step
of time according to a Dini-continuous probability function
pij(xi(k), π(k)), out of (2). If the system is perturbed in such
a way that the perturbed system is described by

xi(k + 1) = w′ij (xi(k)) , (20)

where the affine mapping w′ij is chosen at each step of
time according to a Dini-continuous probability function
p′ij(xi(k), π(k)), out of

w′ij(xi) = A′ixi + b′ij . (21)

Then, if P ?1 be the Markov operator for the system (1) with
invariant measure ν?1 , and if P ?2 be the Markov operator of
the perturbed system (20) with invariant measure ν?2 , we have,
for all x ∈ X , the following estimates of distance between
their invariant measure in Wasserstein-1 distance:

W1(ν
?
1 , ν

?
2 )

≤ 1

1− r

(
r′
∑
σk

pσk
(x)
∥∥∥wσk

(x)− w′σk
(x)
∥∥∥
∞

+ βη

)
(22)

where
(a) 0 < r < 1, is a contraction factor for the Markov

operator in W1 metric,
(b) σ0, σ1, σ2, . . . are i.i.d discrete-random-variable taking

values in {1, 2, . . . , N},
(c) η is the bound on the perturbation in probabilities, i.e.,∑

σk

‖pσk
(x)− p′σk

(x)‖ ≤ η,

(d) β is a bound for the real-valued continuous function w ∈
Cb(X ,R),

(e) ‖w(x)−w(y)‖ ≤ r′‖x− y‖, for some r′ and for almost
all x, y ∈X .

Such a perturbation analysis is also a small step from the time-
invariant setting of Theorem 1 towards a time-varying setting.

D. A time-varying setting

Many practical applications do, indeed, involve time-varying
populations, i.e., populations that change over time. In partic-
ular, time-varying response functions of populations are very
clearly observable in most real-world social-sensing applica-
tions, where people follow diurnal rhythms. At night, there



may be fewer participants, whose responses may be different
from the day-time participants’.

Let us define the time-varying setting formally. Let X be a
closed subset of Rn. We are given a finite set of bounded
Lipschitz transformations:

L = {wσ : X →X }Nσ=1

and a countable family of N -tuple probability functions

{ps(x) = (ps1(x), p
s
2(x), . . . , p

s
N (x))}∞s=1 (23)

where the variable s denotes a discrete time-scale, for each
fixed s ∈ N, and for all σ ∈ [1, N ], psσ : X → [0, 1] and for
any fixed s ∈ N,

0 ≤ psσ(x) ≤ 1 ∀σ ∈ [1, N ],
N∑
σ=1

psσ(x) = 1 ∀x. (24)

We now introduce a time-varying stochastic situation as fol-
lows: let s denote a discrete time-scale, between s = 1
and s = 2, a certain number say k = 1, 2, . . . , t iteration
is performed for the system (1) with a tuple of probability
function {(p11(x), p12(x), . . . , p1N (x))} and after such number
of iteration we change the probability-tuple and we perform
the iteration again, for a general s, time-varying situation (1)
becomes

xs(k + 1) = wσs
k
(xs(k)) (25)

with the probability tuple {(ps1(x), ps2(x), . . . , psN (x))} ,where
σs0, σ

s
1, . . . are i.i.d discrete-random-variable taking values in

{1, 2, . . . , N}. To aid exposition, let us illustrate this with a
simple example. At time scale s = 1, choose x1(0) ∈X and
calculate p1(x1(0)) as defined in (23), we use this vector as
the chance of selecting a transformation

wσ1
1
(x1(0)), σ1

1 ∈ {1, 2, . . . , N}

This is done by considering the probabilities as bins, σ1
1 , with

length p1i (x
1(0)). Placing these bins end to end on [0, 1] will

fill the interval as a consequence of (24). We then choose a
random number q ∈ [0, 1] and the bin containing q corresponds
to the probability function we choose. The starting point of the
next iteration is

x1(1) = wσ1
1
(x1(0))

is calculated and consequently a new probability vector
p1(x1(1)) must be calculated. See Algorithm 1 for the general
schema. For time steps t between s and s+1, the conditional
distribution of the future depends only on the current state.
For the time steps between s and s + 1, the process defined
by (25) is clearly Markovian.
Let Cb(X ) denote the set of real-valued bounded continuous
functions on X , for any s, one can define a linear map Ps on
Cb(X ,R):

Psw(x) :=

N∑
i=1

psi (x)(w ◦ wσs
i
)(x) (26)

This operator characterizes the Markov chain. Due to the

fact that Ps maps Cb(X ) into itself, which is also known
as Ps being a Feller map [20, cf. Section 5.1], the chain is
sometimes called Feller chain. We will mainly be interested
in the problem of uniqueness or non-uniqueness of invariant
probability measures. A probability measure ν on X is called
invariant for the operator Ps if∫

X

(Psw)dν =

∫
X

wdν ∀w ∈ Cb(X ). (27)

Denoting the dual of the map Ps as follows:

P ?s : M (X )→M (X ), (28)

with the requirement∫
X

wd(P ?s ν) =

∫
X

(Psw)dν, (29)

then (27) is reduced as: a ν? ∈M (X ) is invariant if and only
if

P ?s ν? = ν?. (30)

Such a dual map P ?s is well-defined by the Riesz representa-
tion theorem.

Theorem 3. Let for each s, Ps be defined as in (26). If
there exists x ∈ X , for which the sequence of transitional
probability measures {νsm(x, ·)}m≥0 is uniformly tight, then
there exists an invariant probability measure for P ?s .

The proof is included in the Appendix. A number of further
results can be shown in this setting, as described in Appendix
B.

E. Implications

When the existence of a unique ergodic measure is guaranteed,
either by Theorem 1, or by Theorem 3 in Appendix B, this
assures predictability, as introduced in Definition 1:

Corollary 2 (Predictability in the Time-Invariant Setting).
Consider the feedback system depicted in Fig. 3, for some
given finite-dimensional stable linear systems C and F . As-
sume that each agent i ∈ {1, . . . , N} has state xsi (k) governed
by (1), where the affine mapping wsij is chosen at each step
of time according to a Dini-continuous probability function
psij(x

s
i (k), π(k)), out of (21), where Ai is a Schur matrix and

for all i, π(k), and for each fixed s,
∑
j p

s
ij(x

s
i (k), π(k)) = 1.

Moreover, assume that the probabilities psij are bounded away
from zero and that the conditions of Theorem 3 hold for
the process thus defined. Then, the feedback loop ensures
predictability of each agent’s dynamics, i.e., for each agent
i, there exists a constant ri such that

lim
k→∞

1

k + 1

k∑
j=0

xsi (j) = ri, a.s. (31)

Corollary 2 ensures that, under the mild assumptions of The-
orem 1, the participants’ trajectories still couple for different
initial conditions; that is, the predictability still holds. As stated
before, such a property is important in practical social sensing



problems1, as the central authority thus ensures a predictable
task allocation.
In turn, predictability allows for fairness, as introduced in
Definition 2, albeit under strict conditions suggesting that the
agent’s behaviour is symmetric in some sense and that their
initial states are the same:

Corollary 3 (Fairness in the Time-Invariant Setting). Consider
the feedback system depicted in Fig. 3, and the same conditions
as in Corollary 2. If, in addition:
• if the agents’ states evolve from a uniform initial state,

that is, if there exists a constant c such that xi(0) = c
for all agents i,

• the state-dependent probabilities (5) are uniform, i.e.,
there exists family of functions {qσ(x)}Nσ=1, qσ : X →
[0, 1] such that for all agents i = 1, 2 . . . N and all
x ∈X , piσ(x) = qσ(x),

then the feedback loop ensures fairness of the agents’ dynam-
ics, that is, there exists a constant r such that

lim
k→∞

1

k + 1

k∑
j=0

xsi (j) = r a.s. (32)

for all agents i.

Proof of Corollary 3: Fairness follows immediately from
the Markov property of the iterated function system with state-
dependent probabilities (12).

Remark 1. Throughout Corollaries 2–3, Dini’s condition on
the probabilities may be replaced by simpler, more conserva-
tive assumptions, such as Lipschitz or Hölder continuity [66].

In Appendix C, we generalise these corollaries to the time-
varying setting. The question whether further generalisations
of fairness, such as ε-fairness of Definition 3, allow for less
strict conditions on the initial state, are most intriguing, but
left open.

V. THE SEARCH FOR MISSING ENTITIES

We are now able to showcase the application of our ab-
stract algorithmic schema (cf. Algorithm 1) in the context of
searching for missing entities utilising a network of parked
cars. Algorithm 2 specialises Algorithm 1 as follows: abstract
agents are specialised to cars; the state is composed of the
internal states of the cars (xi) and the numbers of cars parked
in their vicinity (N i), as well as the possible states of the
controller (C ) and filter (F ). The state xi(k) at time k is in
the set {0, 1}, which models whether agent i participates in
the search (xi(k) = 1) or not (xi(k) = 0).
The abstract sets of state-to-state functions w of Algorithm
1 are replaced with three possible behaviours ff , fs, fm of
the cars, corresponding to a few, some, and many cars
parked in their vicinity, as depicted in Fig. 5. The ab-
stract agent- and state-dependent probability pi(xi(t)) =
(pi1(x

i(t)), . . . , piN (xi(t))) of choosing a particular abstract w
at time t is specialised to an agent- and state-dependent prob-
ability (pif (t), p

i
s(t), p

i
m(t)) of the three possible behaviours.

1This property is also desirable in resource-sharing problems [27].

These probabilities may depend on the number of neighbour-
ing vehicles, but must satisfy the conditions of Theorem 1.
Indeed, clusters of cars can cooperate and take turns to cover
one area, whereas a sole car on a street must be almost always
on.
Finally, k is a counter of the samples drawn using any of
the three-vectors, since the most recent signal is broadcast.
Another counter h counts the number of signals broadcast,
since the most recent perturbation of the states. Finally, s is
the counter of the perturbations. Time is hence captured by a
triple (s, h, k), considered lexicographically.
To demonstrate the performance of our algorithm, we em-
ployed Simulation of Urban MObility (SUMO) Version 1.2.0.
SUMO [70] is an open-source, microscopic traffic simulation
package primarily being developed at the Institute of Trans-
portation Systems at the German Aerospace Centre (DLR).
SUMO is designed to handle large networks and comes with
a “remote control” interface, TraCI (short for Traffic Control
Interface) [71], which allows one to adapt the simulation
and to control singular vehicles and pedestrians on the fly.
Our goal was to simulate a pedestrian walking about in
an urban scenario, and to regulate the number of parked
vehicles actively searching for the pedestrian in an energy-
and coverage-efficient manner using our algorithm.

A. City of Melbourne test case scenario setup

The region considered for our simulations consisted of the
City of Melbourne municipality, with a boundary map obtained
from [72]; cf. Fig. 4. A dataset containing spatial polygons
representing the on-street parking bays across the city was
obtained from [73]. A total of 24,067 on-street parking spaces
were imported to our SUMO network as polygons from this
dataset.

Figure 4. A map of the City of Melbourne, as imported from OpenStreetMap
for our use in SUMO simulations.

To generate random walks for the pedestrian, we utilised
the TraCI function traci.simulation.findIntermodalRoute. In
particular, at the commencement of each walk, a random
origin and destination lane were selected from the list of all



Data: Number of agents N ; initial state xi(0) ∈X
for each agent i; a set of possible behaviours
{ff , fs, fm} valid for any agent, based on the
few, some, or many cars in the vicinity; number
t of time steps between perturbations; time
horizon t ≤ T of time steps; a bound δ on the
rate of change of the number Ni of cars parked
in the vicinity of car i, within t time steps.

Result: Missing entity location or fail alert.
Initialise s← 0; h← 0; π(0)← 0; xi(0)← 0;
ŷ(0)← 0;
while s · h ≤ T do

while h ≤ t do
for each car i do

Car i determines the number Ni(st+ h) of
neighbouring cars;

Car i decides whether Ni(st+ h)
corresponds to few, some or many
neighbouring cars;

Car i sets
pi = (pif (st+ h), pis(st+ h), pim(st+ h))
corresponding to the behaviours
{ff , fs, fm} for few, some or many
neighbouring cars ;

Car i “tosses a coin” and updates state
xi(st+ h) using one of {ff , fs, fm},
chosen with probabilities pi ;

if xi(st+ h) = 1 then
Car i scans for missing entity using
RFID ;

if the missing entity is located then
Car i returns position of the

missing entity to the requester of
the search ;

end
end

end
Central authority observes filtered aggregate

state ŷ(st+ h), where the filter F is possibly
not known a priori ;

Central authority computes the error e(st+h) ;
Central authority broadcasts signal π(st+ h)
computed using some controller C and
increments h to h+ 1;

end
The environment perturbs the numbers Ni, i.e.,

the numbers of cars parked in the vicinity, such
that |N i((s+ 1)t)−N i(st+ h)| ≤ δ and
increments s to s+ 1.

end
The cars have failed to locate the entity within the
time horizon ;

Return an alert to the requester of the search;
Algorithm 2: A specialisation of Algorithm 1 for the
search for a missing entity.

possible lanes on the network for which pedestrians were
permitted on, and these origin and destination links were
then provided as input to the TraCI function which generated
the route. The maximum walking speed for the pedestrian
was set at SUMO’s default of 1.39m/s. We used SUMO’s
striping pedestrian model [74] as the model for how the person
otherwise interacted with the map.
Another parameter in our experiment was the proportion of
parking spaces in each simulation that would have cars parked
in them that were capable of participating in the search. We
elected for each parking space (out of the 24,067 total parking
spaces) to have a 50% chance of being inhabited by a vehicle
capable of participating in the search. Thus, at the beginning
of each simulation, a “coin” was flipped for each of the 24,067
parking spaces. The result of this “coin flip” was compared to
the fifty percent value to determine whether that parking space
would be inhabited by a parked vehicle capable of participating
in the search or not, over that particular simulation. Parking
space assignments for vehicles then remained constant for the
duration of a simulation, and parked, participating vehicles
were “Switched On” or “Switched Off” according to Algo-
rithm 2. At the beginning of each search, the proportion of
participating vehicles that were initially “Switched On” was
set at 30%. We chose our target number r of “Switched On”
vehicles to be 7,200.
For our probability models, we employed the use of logistic
functions which are illustrated in Fig. 5. We placed a circle
with a radius of twenty metres around each parked vehicle
capable of participating in the search, and let the number of
other parked vehicles (capable of participating in the search,
and) residing within this circle, equate to the number of
neighbours that the vehicle at the centre of the circle had.
For simplicity, we assume that ŷ = y (that is, the filter F
provides a perfect estimate for the resource consumption)2. We
also consider a simple controller model given by the difference
equation

π(k) = γπ(k − 1) + κ [e(k)− αe(k − 1)] , (33)

for all k ∈ N, in which α, γ, κ ∈ R. This model includes, as
particular cases, classical lead, lag and PI controller structures
[75, 76]. For this particular example, we let α = −4.01,
γ = 0.99 and κ = 0.1 in (33). We set each vehicle’s RFID
polling rate (i.e., the frequency at which a car’s RFID system
is sampling when the vehicle is “Switched On”) as “Always
On”, meaning that once “Switched On”, a vehicle is always
polling as opposed to doing periodic, timed reads. We set a
circular RFID field around each car with a radius of six metres.
Moreover, we assumed that once a pedestrian entered this field,
and if the vehicle was “Switched On”, then the pedestrian
would be detected. In other words, in this paper, we neglect
some of the more complicated phenomena typically associated
with RFID, such as the effects of tag placement, antenna
orientation, cable length, reader settings, and environmental
factors such as the existence of water or other radio waves
[77].
For each simulation, then, our goal was to set the person down

2Moving average schemes are also standard choices.



Figure 5. Logistic functions used to model the possible behaviours
{ff , fs, fm} in Algorithm 2.

on a random edge, and have them walk until either: (i) they
were detected by a parked vehicle that was “Switched On” and
thus actively searching at the same time as when the pedestrian
was passing by; or (ii) thirty minutes had transpired and no
detection event had occurred. We permitted thirty minutes to
lapse before a “fail-to-detect” event was recorded, keeping in
mind that quickly finding a missing and potentially stressed
person, and returning them to their home, for instance, is ideal.
All simulations had time-step updates of 1s, while our control
signals were sent only every 20s. For our test case scenario,
100 simulations were performed in total.

B. Numerical illustrations

To gather some preliminary data, we first permitted a small
sample of ten simulations to run for a full thirty minutes,
with no pedestrian placement yet. From these simulations,
Fig. 6 demonstrates that regulation of the system, such that
approximately 7,200 parked vehicles were “Switched On” at
any point in time, was achieved quite rapidly. Specifically,
the blue line in the figure indicates the mean number of
vehicles "Switched On’ versus time (from the ten sample
simulations); while the red shaded area indicates one sample
standard deviation each side of the mean. Fig. 7 illustrates
the evolution of the mean control signal π over time. (Again,
the red shaded area indicates one sample standard deviation
each side of the mean.) Notice that π could then be used
in association with Fig. 5, along with the known number of
neighbours that a vehicle had, to determine the probability of
that vehicle being “Switched On” over the next appropriate
time interval.
Next, we performed our simulations proper, where a pedestrian
was inserted onto the map at the beginning of each simulation,
and these ran until either: (i) the pedestrian was detected by
a parked vehicle that was “Switched On” and thus actively
searching at the same time as when the pedestrian was passing
by; or (ii) thirty minutes had lapsed and no detection event had
occurred. The data collected from our experiment comprised
of: (i) the average time taken (in minutes) until detection of the

Figure 6. The blue line indicates the mean number of vehicles "Switched
On’ versus time (from ten sample simulations, each regulating the number of
“Switched On” vehicles to 7,200 at any point in time), while the red shaded
area indicates the area within one standard deviation from the mean number
of vehicles.

Figure 7. Weak convergence of the mean control signal, π, over time. The
red shaded area indicates the area within one standard deviation away from
the mean control signal.

missing entity occurred (provided that the detection occurred
within thirty minutes from the beginning of an emulation,
else a fail result was recorded); and (ii) the total number
of times that fail results were recorded over the entirety of
the experiment. To reiterate, 100 simulations in total were
conducted during our experiment. The results were as follows:
(a) Average Detection Time = 5.30 minutes; and (b) Failed
to Detect = 6 times out of 100 simulations. In other words,
the pedestrian was not detected within a thirty-minute time
frame, 6% of the time. For the other 94 cases, the pedestrian
was detected, on average, in approximately five minutes.

VI. CONCLUSIONS AND FUTURE WORK

We have considered the notion of predictability and a notion of
fairness in time-varying probabilistic models of social sensing.
This could be seen as a contribution to the growing literature



[27, 78, 79] on fairness beyond machine learning, as well as
an addition to the theory of social sensing.

A number of theoretical questions arise: what other conditions
assure fairness in the sense of statistical parity (Definition
2)? What other notions of fairness could there be, other than
Definitions 2–3? We believe these could spur a considerable
interest across both Social Sensing and Control Theory.

In our application, we have considered dynamic parking,
which requires such time-varying probabilistic models. We
envisage a number of ways forward regarding improving our
experimental setup, including performing more simulations in
further cities worldwide.

There could also be a number of other applications. For
instance, during the current COVID-19 pandemic [49], many
governments considered the mandatory participation in a trac-
ing scheme that would be sufficient to contain a contagion,
and the option of invading the privacy of individuals in such
a sensing scheme. One could also see testing as a means of
social sensing and consider a stochastic model [80] thereof.
In such a setting, our notion of fairness may also be worth
considering.
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APPENDIX

A. An Alternative Formalisation

While the formalisation of Section III of the paper is perfectly
valid, one could also consider an alternative formalisation.
Therein, consider N agents aiming to estimate the evolution
of state transitions (for finite state space; or an evolution of a
measure for uncountable state space) of a state-space Markov
chain {Xk}k≥0. Let X = {1, 2, . . . , n} when the underlying
state-space is finite and let X be a closed subset of Rn with
a metric ρ on it such that (X , ρ) forms a complete, separable
metric space when the underlying state-space is uncountable.
Let ν0 be the initial distribution of the Markov chain. Each
agent plays its role once in a predetermined (but in a random
fashion) sequential order indexed by k = 0, 1, 2, . . . which
can be viewed as a discrete time instant. Then:

Definition 8 (Social sensing). The social sensing protocol by
a group of N agents proceeds as follows:

• Initially, let the chain start from some A ∈ B(X ) i.e.,
P(X0 ∈ A ) = ν0(A ).

• At time k, C broadcasts a signal π(k) and the agents
change their state state from Xk−1 to Xk such that

P(Xk ∈ A |Xk−1) =

∫
X

ν(Xk−1,A )dνk−1(xk−1)

= νk(A )

for any event A ∈ B(X ), and the integral is in the
sense of Lebesgue with respect of probability measure
νk−1 and ν(x,A ) = P(Xk ∈ A |Xk−1 = x) is the
transition kernel.

Now at this point we should mention that since there is
an inherent randomness in the reaction of each agent to
the broadcast signal, the closed loop of Figure 3 requires
a stochastic model. A model based on an iterated function
system (IFS), which is a class of discrete-time Markov Chains
with an uncountable state space, considers response functions
that are either absolutely continuous or Lipschitz in nature. If
for N agents, we use f1, . . . , fN “response functions”, then
the chain will move by the action of a single randomly chosen
function out of the family. This can be stated in the following
recurrent relation:

Xk+1 = fσk
(Xk) , k = 0, 1, 2, . . . ,

σ0, σ1, . . . are i.i.d discrete random variables taking values in
[1, N ]. Now, for the evolution of this social sensing process
we define:

Definition 9 (A linear operator for social sensing). Let us
consider an operator P on the space of all bounded continuous
functions Cb(X ), for social sensing as follows:

Pf(x) = E
[
f (Xk+1) |Xk = x

]

whose dual P ? is defined on the space of all Borel probability
measure on X denoted by M (X ) as follows:

P ?ν =

∫
X

P(Xk ∈ A |Xk−1 = x)νdx

As stated in the introduction, our aim in this paper is to
regulate the task distribution of social sensing, which assures
predictability and fairness. An important prerequisite for both
predictability and fairness is:

Definition 10 (Ergodicity). Let us consider a linear operator
P for social sensing. We call the social-sensing ergodic if there
exists an unique ν? ∈M (X ) such that P?ν? = ν?.

which could be studied independently.

B. Proof of the Main Result

In the following, we present the proof of the main result.

Proof of Theorem 2: Letting Cb(X ) denote the set
of real-valued bounded continuous functions on X , one can
define a linear map P on Cb(X ,R) (using Definition 5):

Pw(x) :=

N∑
i=1

pi(x)(w ◦ wσi)(x) (34)

This operator characterizes the Markov chain. P maps Cb(X )
into itself, which is known as Feller property, or that P is a
Feller map. Let M (X ) denote the set of Borel probability
measures on X . Denote the dual of the map P as follows:

P ? : M (X )→M (X ), (35)

with the requirement∫
X

wd(P ?ν) =

∫
X

(Pw)dν. (36)

Such a dual map P ? is well defined by the Riesz represen-
tation theorem. Now we show that P ? is a contraction in
Wasserstein-1, i.e., in W1 metric with some contraction factor
r ∈ (0, 1). For any two ν1, ν2 ∈M (X ), we have:

W1(P
?ν1, P

?ν2)

= sup
w∈L1

[∫
wd(P ?ν1)−

∫
wd(P ?ν2)

]
(∵ (18))

= sup
w∈L1

[∫
(Pw)dν1 −

∫
(Pw)dν2

]
(∵ (36))

= sup
w∈L1

[∫
(Pw)d(ν1 − ν2)

]
= r · sup

w∈L1

[∫ (
1

r
Pw

)
d(ν1 − ν2)

]
= r · sup

g∈L1

∫
gd(ν1 − ν2)

(
∵ g :=

1

r
Pw ∈ L1 as w ∈ L1

)
≤ r ·W1(ν1, ν2). (37)



Now a useful consequence of the above derived fact is:

W1(ν
?
1 , ν

?
2 )

= W1(P
?
1 ν

?
1 , P

?
2 ν

?
2 ) (∵ P ?1 ν

?
1 = ν?1 , P

?
2 ν

?
2 = P ?2 ν

?
2 )

≤ W1(P
?
1 ν

?
1 , P

?
1 ν

?
2 ) + W1(P

?
1 ν

?
2 , P

?
2 ν

?
2 ) (Triangle inequality)

≤ rW1(ν
?
1 , ν

?
2 ) + W1(P1ν

?
2 , P2ν

?
2 ) (∵ (37))

⇒ W1(ν
?
1 , ν

?
2 ) ≤

(W1P1ν
?
2 , P2ν

?
2 )

1− r
(38)

Now, notice that:∥∥∥P1w(x)− P2w(x)
∥∥∥

(34)
=
∥∥∥∑
σk

pσk
(x)(w ◦ wσk

)(x)−
∑
σk

p′σk
(x)(w ◦ w′σk

)(x)
∥∥∥

=
∥∥∥∑
σk

pσk
(x)
[
(w ◦ wσk

)(x)− (w ◦ w′σk
)(x) + (w ◦ w′σk

)(x)
]

−
∑
σk

p′σk
(x)(w ◦ w′σk

)(x)
∥∥∥

=
∥∥∥∑
σk

pσk
(x)
[
(w ◦ wσk

)(x)− (w ◦ w′σk
)(x)

]
+∑

σk

pσk
(x)(w ◦ w′σk

)(x)−
∑
σk

p′σk
(x)(w ◦ w′σk

)(x)
∥∥∥

=
∥∥∥∑
σk

pσk
(x)
[
(w ◦ wσk

)(x)− (w ◦ w′σk
)(x)

]
+∑

σk

[
pσk

(x)− p′σk
(x)
]
(w ◦ w′σk

)(x)
∥∥∥

≤
∥∥∥∑
σk

pσk
(x)
[
(w ◦ wσk

)(x)− (w ◦ w′σk
)(x)

]∥∥∥+∥∥∥∑
σk

[
pσk

(x)− p′σk
(x)
]
(w ◦ w′σk

)(x)
∥∥∥

≤
∑
σk

∥∥∥pσk
(x)
∥∥∥ · ∥∥∥ [(w ◦ wσk

)(x)− (w ◦ w′σk
)(x)

] ∥∥∥+∑
σk

∥∥∥ [pσk
(x)− p′σk

(x)
] ∥∥∥ · ∥∥∥(w ◦ w′σk

)(x)
∥∥∥

≤ r′
∑
σk

pσk
(x)
∥∥∥wσk

(x)− w′σk
(x)
∥∥∥+ βη. (39)

And, then,

W1(P
?
1 ν, P

?
2 ν)

= sup
w

∫
wd(P ?1 ν − P ?2 ν)

= sup
w

∫
(P1w − P2w)dν

≤ sup
x

(
r′
∑
σk

pσk
(x)
∥∥∥wσk

(x)− w′σk
(x)
∥∥∥+ βη

)

≤

(
r′
∑
σk

pσk
(x)
∥∥∥wσk

(x)− w′σk
(x)
∥∥∥
∞

+ βη

)
.

And, finally (19) is concluded from (38) and (39).
Next, we would like to show the existence of a certain family
of measures (Theorem 3) and its uniqueness (Theorem 4) in
the time-varying case. In Theorem 3, we need:

Definition 11 (Uniformly tight measure; Definition 8.6.1 in
Bogachev [81]). An arbitrary M ⊆ M (X ) is called uni-
formly tight if ∀ε > 0 there exists a compact subset K ⊆X
such that ν(K ) ≥ 1− ε, ∀ν ∈M (X ).

It can be shown that on a compact metric space, any family
of probability measures is uniformly tight, cf. Theorem 8.6.2
in [81]. Intuitively, for any other space, probability measures
accumulate on compact subsets of the underlying space. We
use a result due to Prokhorov [82] which says, if {νn}∞n=1 ∈
M (X ) be uniformly tight sequence, then there exists a sub-
sequence {νnk

}∞k=1 of {νn}∞n=1 and a ν ∈M (X ) such that
{νnk
}nk
→ ν weakly. Now, with this in mind, we establish

the existence of invariant measures of the Markov process
described in equation (25). Let B(X ) denote the Borel sigma-
algebra on X . For any Borel set A ∈ B(X ) let us define
m-step transitional probability functions, which are probability
measure for each fixed x ∈X and measurable function of x
for each fixed A ∈ B(X ), as follows:

νsm (x,A ) = Prob (xs(m) ∈ A |xs(0) = x) . (40)

Proof of Theorem 3: Assume that there exists at least one
x ∈ X for which the sequence {νsj (x, ·)}∞j=0 is uniformly
tight. Then we show that there exists at least one invariant
probability measure for P ?s . The proof is based on the Krylov-
Bogoliubov [83] type argument. Define a sequence of proba-
bility measures which are the average over time of the m-step
transition probabilities on (X ,B(X )) as follows for some
fixed x ∈X :

for A ∈ B(X ), νsm(A ) =
1

m

m∑
j=1

νsj (x,A ) (41)

It is clear that this sequence is also tight, so it has a sub-
sequence that converges weakly to some probability measure
νs? on X . We also have the following equality:

P ?s ν
s
m − νsm =

1

m

m+1∑
j=2

νsj (x,A )− 1

m

m∑
j=1

νsj (x,A )

=
1

m

[
νsm+1(x,A )− νs1(x,A )

]
(42)

Notice that for each fixed x ∈ X , νs(x,A ) is a probability
measure and the integral of w(x) with respect to such measure
is expressed as

∫
w(y)νs(x, dy), and the interpretation holds

for any m ∈ N and written as
∫
w(y)νsm(x, dy). Take any

w ∈ Cb(X ,R) such that |w(x)| < 1. Fix an ε > 0. Weak
convergence of the probability measures {νsm}m≥1 ensures
that there is a natural number m > 1

ε for which∣∣∣∣∫ w(x)νsm(dx)−
∫
w(x)νs?(dx)

∣∣∣∣ ≤ ε.
Since (Psw) is continuous, we can chose large m for which∣∣∣∣∫ (Psw)(x)ν

s
m(dx)−

∫
(Psw)(x)ν

s
?(dx)

∣∣∣∣ ≤ ε.



Now,∣∣∣∣∫ w(x)(P ?s ν
s
?)(dx)−

∫
w(x)νs?(dx)

∣∣∣∣
≤
∣∣∣∣∫ w(x)(P ?s ν

s
?)(dx)−

∫
w(x)(P ?s ν

s
m)(dx)

∣∣∣∣
+

∣∣∣∣∫ w(x)(P ?s ν
s
m)(dx)−

∫
w(x)νsm(dx)

∣∣∣∣
+

∣∣∣∣∫ w(x)νsm(dx)−
∫
w(x)νs?(dx)

∣∣∣∣
≤
∣∣∣∣∫ (Psw)(x)ν

s
?(dx)−

∫
(Psw)(x)ν

s
m(dx)

∣∣∣∣
+

1

m

∣∣∣∣∫ w(y)(νsm+1(x, dy)−
∫
w(y)νs(x, dy)

∣∣∣∣+ ε

≤ 2ε+
2

m
≤ 4ε

Since the above relation is true for any arbitrary ε, we can
conclude∣∣∣∣∫ w(x)(P ?s ν

s
?)(dx)−

∫
w(x)νs?(dx)

∣∣∣∣ = 0

Also, considering that w ∈ Cb(X ,R) is arbitrary,

P ?s ν
s
? = νs?.

Next, notice that any two trajectories get arbitrarily close to
each other, eventually:

Theorem 4. Consider two trajectories (realizations) of the
Markov chain in (25) starting from any two different initial
conditions xs(0) and ys(0). These trajectories couple in the
sense of (1.2) in Hairer [84].

Proof of Theorem 4: Consider the two trajectories of
the system (25) with wσs

k
(xs(k)) = Aσs

k
xs(k) + bσs

k
starting

from two different initial condition xs(0) and ys(0) as follows,
where s is denote the discrete-time scale over N:

xs(k) =
(
wσs

k−1
◦ wσs

k−2
◦ · · · ◦ wσs

1

)
(xs(0)) (43)

ys(k) =
(
wσs

k−1
◦ wσs

k−2
◦ · · · ◦ wσs

1

)
(ys(0)) (44)

Let ‖·‖ be any norm on Rn, then any n × n real-matrix A
induces a linear operator on Rn with respect to the standard
basis and norm of A is well defined as

‖A‖ := sup
x 6=0

{
‖Ax‖
‖x‖

: x ∈ Rn
}

(45)

Since all matrices involved in the transformations are Schur
matrices (i.e., if λ is an eigenvalue for such matrix, |λ| < 1)
then for any matrix norms induced by vector norms ‖·‖, we
have the following:

0 <

∥∥∥∥∥
k−1∏
i=1

Aσs
i

∥∥∥∥∥ ≤
k−1∏
i=1

∥∥Aσs
i

∥∥ < k−1∏
i=1

λσs
i
<
(
λ̂
)k

< 1, (46)

where λσs
i
< 1 is the largest eigenvalue of the matrix Aσs

i
and

λ̂ is the largest of all such {λσs
i
}k−1i=1 . One can notice that for

all initial values xs(0), ys(0) ∈X we have,

ρ(xs(k), ys(k)) = ‖xs(k)− ys(k)‖

=

(∥∥∥∥∥
k−1∏
i=1

Aσs
i

∥∥∥∥∥
)
‖xs(0)− ys(0)‖

≤

(
k−1∏
i=1

∥∥Aσs
i

∥∥) ρ(xs(0), ys(0))
≤
(
λ̂
)k
ρ(xs(0), ys(0))

k→∞−−−−→ 0. ∵ (46).

Thus, the trajectories couple as k →∞.

C. Implications for the time-varying case

Our results of Appendix B assure predictability, as introduced
in Definition 1, even in the time-varying case:

Corollary 4 (Predictability in the Time-Varying Setting). Con-
sider the feedback system depicted in Fig. 3, for some given
finite-dimensional stable linear systems C and F . Assume
that each agent i ∈ {1, . . . , N} has state xsi (k) governed by
(25), where the affine mapping wsij is chosen at each step
of time according to a Dini-continuous probability function
psij(x

s
i (k), π(k)), out of (21), where Ai is a Schur matrix and

for all i, π(k), and for each fixed s,
∑
j p

s
ij(x

s
i (k), π(k)) = 1.

Moreover, assume that the probabilities psij are bounded away
from zero and that the conditions of Theorem 3 hold for the
time-varying process thus defined. Then, the feedback loop
ensures predictability to each agent’s dynamics, i.e., for each
agent i, there exists a constant ri such that

lim
k→∞

1

k + 1

k∑
j=0

xsi (j) = ri a.s. (47)

Proof of Corollary 4: Predictability follows from the
existence of an ergodic measure (Theorem 3), its uniqueness
(Theorem 4), and from Theorem 2 of Elton [85].
In turn, predictability allows for fairness, as introduced in
Definition 2, albeit under strict conditions suggesting that the
agent’s behaviour is symmetric, in some sense, and their initial
states are the same:

Corollary 5 (Fairness in the Time-Varying Setting). Consider
the feedback system depicted in Fig. 3, and the same conditions
as in Corollary 4 in the time-varying case. If, in addition:

• the agents’ states evolve from a uniform initial state, that
is, in the time-varying case, if there exists a constant c
such that x0i (0) = c for all agents i,

• the probability tuple (24) is uniform, i.e., there exists a
family of functions {qsσ}∞s=1, qsσ : X → [0, 1], such that
for all agents i = 1, 2 . . . N and all times s, psi (x) =
qs(x),

then the feedback loop ensures fairness of the agents’ dynamics
within each segment s. That is, for all segments s, there exists
a constant rs such that for all agents i

lim
k→∞

1

k + 1

k∑
j=0

xsi (j) = rs a.s. (48)



Proof of Corollary 5: Fairness follows from the Markov
property of the time-varying model (25).
As above:

Remark 2. Throughout Corollaries 4–5, Dini’s condition on
the probabilities may be replaced by simpler, more conserva-
tive assumptions, such as Lipschitz or Hölder continuity [66].

The results presented in Theorem 4 and in Corollary 4 ensure
that the participants’ trajectories still couple for different initial
conditions; that is, predictability still holds.


