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Abstract—Two new distributed Speed Advisory Systems (SASs)

are introduced in this paper. The systems implement consensus

algorithms that guide a set of vehicles towards a common driving

speed. A major innovation is that consensus is achieved over

a multi-layer network, where parallel network topologies of

connected vehicles are superimposed. The reason for the use of

these parallel networks is that, in this way, state obfuscation

is possible, with the benefit that common driving speed is

attained with no vehicle knowing the exact state of other vehicles.

Convergence of the SASs is formally proven and two new results

for the consensus of multi-layer networks modelled via stochastic

differential equations are introduced. The SASs are also validated

via simulation and via a Hardware-in-the-Loop set-up, where a

real vehicle interacts with simulated entities.

I. INTRODUCTION

S
INCE their original conception, the goal of Intelligent

Speed Adaptation (ISA) systems has been to promote

safe driving by alerting drivers when road speed limits are

exceeded [2], driving at unsafe speeds being a significant issue

worldwide [3], [4]. Since then, ISA systems have considerably

evolved into smarter systems in an attempt to offer additional

benefits to drivers and the surrounding environment. A re-

markable example is given by speed advisory systems (SASs).

The goal of such systems is to recommend suggested speeds

to drivers, and they have proven useful in reducing general

road traffic chaos and preventing travelling delays [5], [6]. The

additional benefits of SASs include, but are not limited to: (i)

ensuring that vehicles travel at safe speeds and at safe distances

from the vehicles ahead of them [7]; (ii) maintaining, as

much as possible, the free flow of traffic, navigating optimally

through bottlenecks when they occur, thus increasing overall

throughput on roads [6], [8]; (iii) helping to reduce factors

such as polluting emissions and fuel consumption [5], [9],

[10]; and safer driving in adverse conditions [11].

When designing SASs, it is typically assumed that the vehi-

cles participating in this service exchange their state. However,

recent studies show that, while individuals are willing to accept
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a plethora of new services like SASs, they are also reluctant

to share their state with others [12]. An interesting problem

in the design of intelligent transportation systems is therefore

that of allowing vehicles to benefit from collaborative services

without the need for them to fully disclose their state with the

other vehicles in the system. In this context, we present here

two SASs that guide vehicles to a common, desired, driving

speed while, at same time, obfuscating, with some noise, the

input received by each vehicle.

Related Work

Consensus problems have a long history in the field of com-

puter science [13], where groups of agents have to agree upon

certain quantities of interest. Due to its potential application

in a number of fields, like data fusion and sensor networks,

consensus has also been widely investigated within the control

theoretical community; see, for example, [14]–[18]. Recently,

consensus-based approaches have also been used to implement

speed recommender systems; see, for example, [19], [20]

and the references therein. In [21], for instance, eco-driving

was examined in regards to controlling vehicles’ speeds at a

microscopic level to reduce fuel consumption and guarantee

data delivery. Vehicles in the study were presumed to have

V2V and V2I capabilities, and platoons were considered and

treated as a single, large vehicle. In [22], the focus of the

study was to extend the functionality of a traffic simulator and

develop APIs for V2V and V2I communication. The extended

simulation system was used to implement advisory speed

recommendation and re-routing guidance for urban freeways

under various load conditions. In [23], an application was

proposed to reduce the CO2 emissions of vehicles travelling

along highways. A notion of optimised consensus was used

to solve the emission optimisation problem and it was shown

that total CO2 emissions could be minimised if all vehicles

followed the reference speed signal derived. A common factor

of the solutions of the papers referenced above is that all of

the vehicles share their speeds with other vehicles. In [9],

an extended version of [23], a step towards preserving driver

privacy was highlighted in that vehicles participating in the

algorithm reported did not share their cost functions with other

vehicles: only their recommended speeds.

Contributions of this Paper

In this paper, we propose two SASs with the objective of

guiding a set of moving vehicles towards a common driving
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speed. In contrast to previous algorithms, which strive to

achieve consensus on a common driving speed via algorithmic

innovation, one of the key novelties of our work is that

it explores the benefits that can be achieved by allowing

consensus protocols to evolve over multiple parallel network

topologies. These parallel networks allow a way to obfuscate,

via some noise, the input received by the vehicles. As a result

of this, a single car in the network does not see the exact speed

of its neighbours, but it rather sees a signal which is obfuscated

by noise. To the best of our knowledge, our approach is new.

The algorithms we propose rely on a solid theoretical

background. The theoretical results used to prove algorithmic

convergence are also a novel contribution of the paper. Specif-

ically, in the appendix, new sufficient conditions are given

for the consensus in multi-layer networks, [24], modelled by

a set of continuous-time stochastic differential equations. By

using stochastic Lyapunov techniques [25], we introduce new

sufficient conditions for network consensus. It is furthermore

important to note that we are designing SASs rather than co-

operative cruise control systems. This distinction is important.

In a SAS, the speed that is delivered to the vehicle is a recom-

mended speed for the driver and is not used to directly adjust

the speed of the vehicle. As a consequence, as discussed in

[9], string stability effects, which are a fundamental limitation

of many cooperative control architectures [26]–[29], can be

ignored in the design of a SAS. We remark that our focus in

this paper is not to construct a fully decentralised system, but

rather to construct a partially distributed solution which allows

convergence of the vehicles towards a target speed, without

requiring vehicles to directly exchange information related to

their speed and their cost function.

Finally, another contribution of this paper is that we demon-

strate our algorithms using a hardware-in-the-loop (HIL) plat-

form, originally described in [30], which permits us to merge

scenarios created using the microscopic traffic simulation

package SUMO [31], capable of emulating large-scale traffic

networks, together with proof-of-concept real-life vehicles

equipped with the SASs that we propose in this work. That

is, we “embed” a real vehicle, equipped with our SASs, into

a SUMO simulation, this real vehicle being represented in the

simulation visually by an avatar. Meanwhile, purely simulated

vehicles participating in the same SUMO simulation are also

subject to our SASs. Consequently, we provide a real driver

the experience of participating in our speed advisory service

in a large-scale scenario, where the rest of the participating

traffic is simulated.

The rest of the paper is organised as follows. In Section II,

the general architecture of our proposed SASs is presented. In

Sections III and IV, we describe the base station and in-car

algorithms as components within this architecture. In Section

V, validations of the algorithms are performed using the HIL

platform introduced above. Section VI offers a concluding

summary of our work and avenues for future research. In the

appendix, mathematical proofs of convergence relating to our

algorithms are provided.

II. THE PROPOSED ARCHITECTURE AND GOALS

The general architecture of the SASs presented in this

paper is schematically shown in Fig. 1. The key components

of the architecture are: (i) a base station which controls

a given geographic area; and (ii) an in-car system which

establishes a connection with the base station and shows speed

recommendations to drivers. The area controlled by the base

station might be a stretch of road (e.g. a highway) or a mini-

city (e.g. a university campus like the one used in Section V

below for HIL testing).

The goal for the SASs presented in this paper is that of

providing speed indications to a network of N interconnected

vehicles in order to allow drivers in the same area to fulfill a

common driving speed. In the first SAS we present, we assume

that the only data sent from the i-th vehicle to the base station

is the vehicle speed, vi. In response, the base station returns to

the i-th vehicle a distributed, obfuscated signal, ui, which is

elaborated on by the in-car system. The in-car system is then

responsible for elaborating on ui and for displaying to the i-th
driver the recommended speed. If the indications are followed

by drivers, then the SAS allows all the vehicles to achieve a

common driving speed, which averages the speeds of all the

vehicles in the network. In the rest of the paper, we will refer to

this SAS as leaderless. Note that the speed towards which all

the vehicles converge is not known a priori. This consideration

motivated the second SAS we are presenting in this paper,

which will be referred to as SAS with leader in what follows.

In this case, the data set sent from the i-th vehicle to the

base station includes both vi and a cost function, hi. The cost

function quantifies the emissions of each vehicle while driving

at a given speed. In response, the SAS again returns to the i-th
vehicle an obfuscated signal ui, which is then elaborated on

by the in-car system. However, in this case, if the indications

provided by the system are followed, then vehicles achieve

a common driving speed which minimises the emissions. As

Fig. 1. Schematic diagram illustrating the system presented in this paper.
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also shown in Fig. 1, this SAS is able to receive a reference

speed from external entities. This feature has been included

in order to handle scenarios where an external authority (e.g.

police or city council) needs to broadcast a temporary speed

restriction in the area controlled by the base station (due to

e.g. weather conditions and/or road accidents).

Remark 1: While SASs make perfect sense in a highway

scenario, they are also useful in a number of urban situations.

For example, this is the case when a campus owner (such as an

University) is interested in minimising the pollution footprint

or energy consumption. The results presented in this paper are

applicable in both urban and highway scenarios.

III. THE BASE STATION ALGORITHM

In this section, we give the details of the base station

algorithms for the SASs. Essentially, in both cases, the base

station implements a consensus algorithm for a multi-layer

network, with state obfuscation. We first present in Section

III-A the consensus algorithm for the leaderless SAS. Then,

in Section III-B, we present the algorithm for the SAS with

leader.

For both SASs, the multi-layer network consists of two

layers, with each layer having the number of nodes equal to N ,

i.e. equal to the number of vehicles within the area controlled

by the base station. We also remark here that for both the

leader and leaderless SAS, the signal received by each vehicle

is corrupted by some white noise injected by the base station.

This obfuscation implies that the i-th in-car system does not

see the exact speed of the neighbouring vehicles and that, in

this sense, the algorithm is privacy preserving. In the appendix,

we will formally prove convergence of the algorithms and we

will indeed show that the noise injected by the base station is

crucial for the convergence.

Remark 2: Our approach, based on the use of multi-layer

architectures, is motivated by certain situations of interest for

Smart Cities and IoT applications, where several communica-

tion networks are available. For example, most car platforms

now support 4G and there are also special V2V network

protocols, as well as other dedicated I2V protocols. Street

lighting and parked vehicles [32] are also being proposed

as infrastructure to support V2V. In such situations, it makes

sense to investigate how these networks can collaborate with

each other to support advanced applications. In addition, in

the context of stochastic differential equations, the dynamics

that we consider naturally model networks of multiple layers.

Remark 3: The base station plays a key role for the

algorithms presented in this paper. The basic assumption

supporting the use of the architecture of Figure 1 is that the

base station owner is honest and protects the data.

A. Leaderless SAS

This SAS only takes as input the speed of the vehicles

within the area (i.e. the vi’s) and its goal is to guide the

vehicles towards a common (average) driving speed. Essen-

tially, such an algorithm continuously checks for vehicles

entering/exiting the area controlled by the base station. This

is done by creating a list that is updated: (i) every time a new

vehicle entering the area is detected; (ii) whenever a vehicle

exits from the controlled area. Once the list is updated, the

algorithm gathers the speeds of the vehicles within the list

and constructs the distributed input ui by implementing the

multi-layer network of Fig. 2.

Namely, the network consists of the following two layers.

• A first layer (i.e. the bottom layer in Fig. 2) that combines

the speed of the last vehicle entering the area with the speed

of the one that entered immediately before. This yields the

computation of a clean input for the vehicles, i.e. uc
i , i =

1, . . . , N , where

uc
i(t) := vi+1(t) + vi−1(t)− 2vi(t), i = 2, . . . , N − 1;

uc
1(t) := v2(t)− v1(t);

uc
N(t) := vN−1(t)− vN (t).

(1)

• A second layer (i.e. the top layer in Fig. 2) that combines

all the vehicle speeds and corrupts this aggregated information

with some white noise, say w(t) (i.e. noise is injected in this

layer). The result of this computation is a noisy input for the

vehicles, i.e. un
i , i = 1, . . . , N , where

un
i (t) := w(t)

N
∑

j=1

(vj − vi). (2)

• The two components are then summed and the recom-

mended input that is returned to the i-th vehicle is

ui(t) := uc
i(t) + un

i (t). (3)

We remark here that the noisy signal w(t) in (2) is a gain

for the signal
∑N

j=1(vj−vi). The key macro-steps of the base

station algorithm are given in Algorithm 1. In the algorithms

that follow, the lines while True do . . . end while indicate

a standard infinite loop, where all of the operations between

these lines are repeated.

Fig. 2. Schematic diagram illustrating how the control input to the network
of vehicles is computed for the leaderless SAS.
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Algorithm 1 Leaderless SAS

function [u1, . . . , uN ] = LEADERLESS-SAS([v1, . . . , vN ])
Internal Variables:

List = list of vehicles within the controlled area
while True do

List update

if new vehicle within the controlled area then

append vehicle to List
else if vehicle exits from the controlled area then

remove vehicle from List
end if

Gather data

N ← size of List
for vehicles in List do

get speeds, vi
end for

Generate noise

w ← value from white noise
Implement the bottom and top network layers

uc
1 ← v2 − v1

uc
N ← vN−1 − vN

for i in [2, N − 1] do

uc
i ← vi−1 + vi+1 − 2vi

end for

for i in [1, N ] do

un
i ← w ·

∑N

j=1
(vj − vi)

end for

Set output

for i in [1, N ] do

ui = un
i + uc

i

end for

return [u1, . . . , uN ]
end while

end function

B. SAS with Leader

This SAS takes into account the speeds of the vehicles, their

cost functions (i.e. the hi’s) and (eventually) a reference speed

provided by an external authority, say v̄. These inputs are

used by the base station to generate a reference driving speed,

say vref , for the vehicles. The reference vref is generated as

follows.

• If the cost functions from each single vehicle are

available, then vref is computed by solving1 the optimisation

problem

min
∑N

i=1 hi(vi),
s.t. vi = vj , ∀i, j = 1 . . . N.

(4)

In the context of this paper, each function hi(vi) quantifies the

vehicle emissions when travelling at speed vi (such functions

are consolidated in the literature, see e.g. [34], and are

typically convex).

• In the case where v̄ is given, then this overrides the

optimisation problem and vref simply becomes the external

reference (i.e. vref = v̄).

Once vref is determined, then the distributed signals, ui’s,

are constructed. Again, the ui’s are computed via a multi-

layer network (see Fig. 3). Note that, in this case, nodes are

1In the validations of Section V, we employed the use of CVXPY, a Python-
embedded modelling language for convex optimisation problems [33]. We
remark here that our theoretical results are independent of the specific software
being used to solve the optimisation problem.

Fig. 3. Schematic diagram illustrating how the control input to the network
of vehicles is computed for the SAS with leader.

disconnected at the bottom layer (i.e. the noise-free layer) and

only one node receives vref as input (this node will act as

network leader).2 Nodes are instead connected through the

top layer by means of noise injection. Namely, the network

consists of the following two layers.

• The first layer (i.e. the bottom layer in Fig. 3) sends

the reference speed, vref to a vehicle, say Vehicle 1. In the

case where Vehicle 1 exits from the controlled area, then the

reference is sent to the last vehicle entering the area. The clean

input for the i-th vehicle is

uc
1(t) := vref (t)− v1(t);

uc
i(t) := 0, ∀i = 2, . . . , N.

(5)

• The second layer (i.e. the top layer in Fig. 3) computes

un
i , i = 1, . . . , N , following (2).

• The two components are again summed up following

(3) to obtain ui.

The key steps of the base station algorithm are shown in

Algorithm 2.

Remark 4: Algorithm 2 optimises a global cost function,

while Algorithm 1 only ensures that the vehicles’ speeds

converge, without any guarantee of optimality for the con-

sensus speed. That is, Algorithm 1 only ensures the vehicles’

speeds converge while Algorithm 2 ensures that the speeds

convergence towards an optimised value.

Remark 5: note that both of the SASs described in this

paper make use of the actual speed of the vehicles within

the area controlled by the base station. If the drivers follow

the indications then, as shown in the appendix, convergence

of the SASs is guaranteed. In principle, the SAS might take

as input only the initial speeds of the vehicles when these

enter the geographic area controlled by the base station. In

this case, dynamics (1), (2), (3), (4) and (5) would be the

dynamics for the recommended speed. The output ui would

be displayed only after the algorithm converges, i.e. vi = vj ,

2This disconnected layer is a novel feature of the algorithm proposed here,
in comparison to the work of [9]. Note that, in consensus literature, it is
assumed that the network is connected.
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∀i, j = 1, . . . , N . The convergence analysis in the appendix

does not depend on whether the speeds in (1), (2), (3), (4) and

(5) are “real” or recommended.

Remark 6: finally, note that, in (5), the reference speed

vref (t) is only given to one vehicle (namely, Vehicle 1).

Note also that, for all the other vehicles, uc
i(t) is equal to

0. While this might seem surprising, this choice allows all

the vehicles’ speeds to converge towards the desired reference

speed vref (t). This is formally proven in the appendix.

Algorithm 2 SAS with leader

function [u1, . . . , uN ] = LEADER-SAS(v̄,[v1, . . . , vN ],
[h1, . . . , hN ])

Internal Variables:

List = list of vehicles within the controlled area
while True do

List update

if new vehicle within the controlled area then

append vehicle to List
else if vehicle exits from the controlled area then

remove vehicle from List
end if

Gather data

N ← size of List
for vehicles in List do

get speeds, vi
get cost functions, hi(vi)
get external reference, v̄

end for

if v̄ available then

vref ← v̄

else

vref ← solution optimisation problem (4)
end if

Generate noise

w ← value from white noise
Implement the bottom and top network layers

uc
1 ← vref − v1

for i in [2, N ] do

uc
i ← 0

end for

for i in [1, N ] do

un
i ← w ·

∑N

j=1
(vj − vi)

end for

Set output

for i in [1, N ] do

ui = un
i + uc

i

end for

return [u1, . . . , uN ]
end while

end function

IV. THE IN-CAR SYSTEM ALGORITHM

The in-car system is common to both of the SASs presented

in this paper. The role of such a system is essentially that

of facilitating the exchange of data with the base station and

to provide the recommended speed to the driver. Specifically,

whenever a connection is established, the vehicle speed is sent

to the base station. Analogously, whenever ui(t) is received,

this is converted to show the recommended speed to the driver.

Note that the input received by each car ui(t) is physically

an acceleration. The in-car system integrates ui(t) to get the

recommended speed.

V. VALIDATION

To demonstrate the efficacy of our proposed SASs, we

considered the road network of a university campus (i.e.

the University College Dublin, Belfield campus, in Ireland),

and utilised the open source microscopic traffic simulation

package, SUMO [31], to perform our emulations. The package

comes with a remote control interface, TraCI [35], that allows

one to adapt the simulation and to control individual vehicles

on the fly.

A map of the University College Dublin (UCD) Belfield

campus was imported from OpenStreetMap. The map was

downloaded and edited using JOSM [36] and cleaned with

XMLStarlet [37] before applying SUMO’s netconvert. A max-

imum allowed link speed of 30km/h was set on the campus

roads to reflect real-world speed limits, and a maximum

allowed link speed of 50km/h was set on roads on the approach

to the campus (i.e. on links on the approach to the campus

entrance gates). The road network is shown in Fig. 4.

For traffic, we elected to simulate a scenario with passenger

vehicles being allocated to enter one of three possible entrance

gates and then heading to one of three possible car parks.

These entrance gates and car parks are also depicted in Fig.

4. The vehicles’ routes were chosen randomly from a total

of nine possible routes. That is, each of the nine routes that

any vehicle could potentially take were given equal weight,

which thus formed the distribution from which the route for

any particular vehicle was randomly selected from as it was

added to the network. Such distributions can be provided to

SUMO by adding the routeDistribution tag3 to the scenario’s

route file. Vehicles entered the network at a rate of one vehicle

per twenty seconds, for twenty minutes, at maximum permitted

departure speed. By the conclusion of the simulation run, sixty

vehicles in total had thus entered the network. When vehicles

arrived at their destination car park, they were removed from

the network. Other attributes4 that we assigned to the simulated

vehicles are as follows: max. speed = 70m/s; max. acceleration

= 2.6m/s2; max. deceleration = 4.5m/s2; speedFactor = 1;

speedDev = 0.1.

To assess the convergence of our algorithms, Python scripts

were written which implemented Algorithms 1, 2 and the in-

car system algorithm. In such scripts, the in-car algorithm re-

ceives the acceleration computed by the base station algorithm

and converts it to a speed. In our simulations, two different test

case scenarios were considered: (i) in the first case, no vehicle

was instructed to be a leader and thus speeds were expected to

converge towards the average (Algorithm 1); (ii) in the second

case, the first vehicle to enter the simulation was selected as

the leader (Algorithm 2) and when this vehicle exited from the

simulation, the leadership was passed to another vehicle. The

time step size used in all of the emulations was 0.1s. In cases

(i) and (ii), the noise, w, injected by the base station algorithm

was generated from a Gaussian distribution with mean equal

to 0 and standard deviation equal to 0.5.

3See http://sumo.dlr.de/wiki/Definition of Vehicles, Vehicle Types, and
Routes#Route and vehicle type distributions. Last accessed: 9th January
2017.

4Attribute descriptions can be found in the user documentation on the
SUMO website [38].
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Fig. 4. UCD Belfield campus.

In regards to case (ii), the optimisation problem that we

solved related to minimising CO2 emissions. One of three pos-

sible cost functions, each function quantifying CO2 emission

levels associated with one (out of a potential three) categories

of vehicle, was allocated to cars when they entered the campus

road network for the first time. (In other words, a category of

vehicle was allocated to cars when they entered the campus

road network for the first time, each category of vehicle

carrying with it an associated cost function.) These three

categories of vehicles were [34, Table 1]: (a) petrol vehicles

with engine capacity less than 1400 cc and European emission

standard Euro 6 (code R007); (b) petrol vehicles with engine

capacity between 1400 and 2000 cc and European emission

standard Euro 6 (code R014); and (c) petrol vehicles with

engine capacity greater than 2000 cc and European emission

standard Euro 6 (code R021). At each time step, (4) was

then solved, yielding a reference speed for Algorithm 2. An

additional constraint applied to the problem was that the speed

given by the solution would not exceed the maximum allowed

speed on the campus roads. Specific descriptions of the three

utilised cost functions were hi(vi) =
a+bvi+cv2

i +dv3

i

vi
, where

the coefficients a, b, c and d are provided in Table I. These

expressions yield grams of CO2 emitted per kilometre. Further

details regarding these cost functions can be found in [34,

Sections 5.2, 5.4, 6.2] and [9, Section IV.A].

TABLE I
EMISSION FACTORS FOR DIFFERENT CATEGORIES OF VEHICLES

Category a [g/h] b [g/km] c [g*h/km2] d [g*h2/km3]

R007 2260.6 31.583 0.29263 0.0030199

R014 2532.4 68.842 -0.43167 0.0066776

R021 3747.3 105.71 -0.8527 0.012264

A. Simulation Results

A simulation was performed to test convergence of the

SASs. Fig’s. 5 and 6 show the time evolution of individual

vehicles’ speeds, for test cases (i) and (ii), respectively. As

expected, Fig’s. 5 and 6 illustrate that the algorithms guide

the speeds of the vehicles towards a common value. More pre-

cisely, as proven in the appendix, Algorithm 1 allows vehicles’

Fig. 5. Case (i): leaderless SAS. Individual vehicles’ speeds versus time.

Fig. 6. Case (ii): SAS with leader. Individual vehicles’ speeds versus time.

speeds to converge towards an average value, while Algorithm

2 allows vehicles speed to converge towards vref . The dips

in the plot lines in the figures are due to vehicles braking

at roundabouts, traffic lights, etc. and the vehicles registering

speeds of 0km/h are stopped at traffic lights, intersections, etc.

The figures illustrate the results from the commencement of

the simulation, to 400s from commencement.5

Table II compares total network CO2 emissions over single

simulation runs, as well as average CO2 emissions per vehicle,

for test cases (i) and (ii). Solving the optimisation problem

of minimising CO2 emissions to obtain reference signals for

Algorithm 2 yielded a lower total network emissions quantity

compared to test case (i) in which Algorithm 1 was applied.

Note that, as per [34, Sections 5.2, 5.4, 6.2] and [9, Section

IV.A], the cost functions used in case (ii) are only relevant

when vehicles are travelling at a minimum of 5km/h. Thus,

emission levels of individual cars over time step intervals when

they weren’t travelling at speeds above this threshold weren’t

included in the total network emission count. This applied

for each test case so that comparisons between the two test

cases could be made. Also recall that the speed limit on the

campus is low and thus the speed regulation band in regards

to the cost function curves is small. Finally, recall that, by

the conclusion of each simulation run, sixty vehicles in total

had entered the network, i.e. sixty vehicles for test case (i)

and another sixty for test case (ii). The total network CO2

emission values provided in Table II thus equate to the sum of

5The portions of results presented in Fig’s. 5 and 6 are representative of
the results obtained from the entire simulation runs.
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emissions released from sixty individual cars over the course

of their journeys, in each test case. The average CO2 emissions

per vehicle for each test case was calculated by dividing total

network emissions by sixty.

TABLE II
CO2 EMISSIONS

Test Case Total Network (kg) Per Vehicle (g)

(i) Leaderless SAS 31.95 532.5

(ii) SAS with Leader 28.12 468.67

B. Hardware-in-the-Loop

Eventual implementations of many intelligent transportation

strategies, like the SASs reported in this work, are intended

to be carried out on a large scale in the real world. For

methodologies in their earlier stages of development, however,

large fleets of real equipped test vehicles are expensive to

come by, or are simply not practical. This dilemma led to

the development of the hardware-in-the-loop (HIL) testing

platform described in [30] (and seen also in https://www.

youtube.com/watch?v=tCX2GLn1pnM). The objective of the

HIL platform is to merge large-scale simulation and proof-

of-concept vehicles by “embedding” real, equipped vehicles

(being driven by real drivers) into SUMO. As such, emulations

consisting of the real vehicles and potentially thousands of

simulated cars are able to be run in realtime, and the drivers

of the real vehicles are presented with an opportunity to

experience first-hand what it feels like to travel in a large-

scale, connected scenario and to try out the new intelligent

transportation technology that is being developed.

An overview of the platform’s architecture is given in Fig.

7. Information of interest from the real vehicle’s onboard

computer, such as the vehicle’s speed, is obtained from the

vehicle’s OBD-II diagnostic connector using an adaptor and

smartphone, and is communicated to a workstation computer

over a cellular network. The workstation computer hosts a

server for communication with the smartphone; and also hosts

SUMO, and the application algorithm itself. Once the required

computations are performed by the workstation computer

using the combination of data from the simulated traffic and

the real vehicle, then updates are sent to both the simulated

and real traffic. In the case of a real vehicle, these updates are

received by the smartphone travelling with the driver.

Thus, next, we utilised the HIL platform to test our SASs

with a real driver. Using otherwise exactly the same setup on

the UCD campus that was described above, we this time also

“embedded” a real vehicle with driver into our emulations. Our

real vehicle is pictured in Fig. 8 on the right. Our driver was

requested to complete some circuits through the UCD campus,

i.e. on topographically the same network that was imported

into SUMO and that the simulated vehicles were also “driving”

on. The test was conducted at a time during which there was

almost no other real activity on the route around the campus

(i.e. other real vehicles, pedestrians, etc.). The advised speeds

issued by the workstation computer were provided to the driver

visually on the smartphone carried in the real vehicle, and on

Fig. 7. Hardware-in-the-loop platform architecture [30].

Fig. 8. Toyota prius.

which we implemented the in-car algorithm. It was ideal to

choose a time and day to perform our experiment when little

real traffic was on the road that would otherwise complicate

the setup.6 The time step size used in our emulations remained

set at 0.1s; however, information was only exchanged every 1s

between the workstation computer and the smartphone carried

in the real vehicle.

Fig’s. 9 and 10 illustrate the advised speeds that the SASs

issued the real driver (i.e. the top, red data line in each figure),

which were obtained from implementations of Algorithms 1

and 2 on the campus network of traffic, now consisting of

the simulated vehicles and the real car. Fig’s. 9 and 10 also

indicate the difference between the speeds at which the real

driver was travelling minus the advised speeds (i.e. the bottom,

green data lines). Fig. 9 relates to test case (i), while Fig. 10

corresponds to test case (ii). In our HIL implementation, we

decided to not show any advised speed to the driver if the

speed of the real car was below 20km/h. This choice was made

to not distract the driver when he was driving at low speeds

to, for example, decelerate due to pedestrians, or approach

roundabouts or traffic lights. This absence of indication is the

reason why there are some gaps in the data lines, indicating

that no advice was given over certain time intervals. As can

be seen from the bottom, green data lines, the driver followed

the speed advice with less than a ±2km/h error.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented two SASs that allow vehicles to

achieve a common driving speed by implementing consensus

6The HIL platform is instrumented to enable the visual inspection of the
full state of the simulation from the car via an additional tablet.
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Fig. 9. Case (i): leaderless SAS. Real vehicle’s advised speed (top line), and
current minus advised speed (bottom line), filtered, versus time.

Fig. 10. Case (ii): SAS with leader. Real vehicle’s advised speed (top line),
and current minus advised speed (bottom line), filtered, versus time.

algorithms evolving on parallel network topologies of con-

nected vehicles. The use of these parallel networks permitted

the obfuscation of, via some noise, the signal received by each

car. As a result, a single car in the network does not see the

exact state of the other vehicles participating in the service.

The algorithms presented here were also rigorously proven

and, in particular, new results on the consensus of multi-layer

networks modelled via stochastic differential equations were

presented. Emulations of the SASs were performed via both

pure simulation and via HIL techniques. Both validation meth-

ods showed that the algorithms effectively allowed vehicles

to achieve a common driving speed. In regards to the HIL

platform and experimentation with a real driver, the driver

was able to follow the speed advice to within a range of

±2km/h. An area of open research is to next study the effects

of disobedient drivers or driver groups on the SASs presented.

A further next step is to implement the SASs presented here

more fully, to evaluate their performance in the real world with

greater scope and to integrate this system with other services

under development, such as the distributed congestion system

recently introduced in [39].
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APPENDIX

In this appendix, we provide new results on the consensus of

networks modelled by stochastic differential equations. Such

results provide the theoretical foundations for the convergence

of the SASs introduced in this paper. Specifically, we will first

give a sufficient condition for the consensus of a stochastic

network. Then, we consider the case where a network node

receives, as input, an external reference signal and, in this

case, we give a sufficient condition for all the network nodes

to converge onto such signal.

NOTATION

We denote by In the n × n identity matrix and by 1n×m

the n ×m matrix having all of its elements equal to 1. The

vector/matrix Frobenius norm will be denoted by ‖·‖F and

the vector/matrix Euclidean norm will be denoted by |·|. The

Kronecker (or direct) product will be denoted by ⊗. The trace

of a square matrix, say A, will be denoted by tr {A} and

its smallest (largest) eigenvalue will be denoted by λmin(A)
(λmax(A)). Let G = (V , E) be an undirected graph with V
being the set of nodes and E being the set of edges. Let N be

the number of nodes in the network. Then (see e.g. [40]) the

Laplacian matrix associated to the graph, L := (lij)i,j=1,...,N ,

is symmetric and we will denote with λi, i = 1, . . . , N , its

eigenvalues.

MATHEMATICAL TOOLS

Consider an n-dimensional stochastic differential equation

of the form

dx = f(t, x)dt+ g(t, x)db, (6)

where: (i) x ∈ R
n is the state variable; (ii) f : R+×R

n → R
n

belongs to C2; (iii) g : R
+ × R

n → R
n belongs to C;

(iv) b is a 1-dimensional Brownian motion. Throughout this

paper we will assume that, for any given initial condition,

(6) has a unique global solution; see e.g. [25]. We will also

assume that f(t, 0) = g(t, 0) = 0 and the solution x = 0
will be said to be the trivial solution of (6). Following

[41], [42], we say that a sequence of stochastic variables

{V1, V2, . . .} converges almost surely (a.s.) to the stochastic

variable V if P ({w : limn→+∞ Vn(w) = V (w)}) = 1. That

is, convergence happens with probability 1 (P = 1). We are

now ready to give the following definition; see [25].

Definition 1. The trivial solution of (6) is said to be

almost surely exponentially stable if, for all x ∈ R
n,

limt→+∞ sup 1
t log (|x(t)|) < 0, a.s.

Let V (t, x) ∈ C1×2 (i.e. V (t, x) is twice differentiable

in x and differentiable in t) and let: (i) LV (t, x) =
Vt(t, x)+Vx(t, x)f(t, x)+

1
2 tr

{

g(t, x)TVxxg(t, x)
}

;(ii) Vx =
[Vx1

, . . . , Vxn
]; (iii) Vxx be the n × n dimensional matrix

having as element ij Vxixj
(where Vxi

:= ∂V (t, x)/∂xi and

Vxixj
:= ∂2V (t, x)/∂xj∂xi). Then, the following result from

[25] holds.

Theorem 1. Assume that there exists a non-negative function

V (t, x) ∈ C1×2 and constants p > 0, c1 > 0, c2 ∈ R, c3 ≥ 0
such that ∀x 6= 0 and ∀t ∈ R

+: (H1) c1 |x|
p ≤ V (t, x)p; (H2)

LV (t, x) ≤ c2V (t, x); (H3) |Vx(t, x)g(t, x)|
2 ≥ c3V (t, x)2.

Then: limt→+∞ sup 1
t log (|x(t)|) ≤ − c3−2c2

p , a.s.. In partic-

ular, if c3 > 2c2, then the trivial solution of (6) is almost

surely exponentially stable.
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STOCHASTIC NETWORKS AND CONSENSUS

We will first consider networks modeled by the following

set of stochastic differential equations

dxi =



σ
∑

j∈Ni

(xj − xi)



 dt+ σ∗
∑

j∈N∗

i

(xj − xi) db, (7)

with initial conditions xi(0) = xi,0, xi ∈ R, i = 1, . . . , N ,

σ > 0 and σ∗ > 0. Such an equation corresponds to the

dynamics of a network consisting of two layers [24]. Note

that the two layers might have different topologies and that one

of the layers is affected by noise. In the rest of the paper, we

will refer to the noise-free layer as communication layer, while

the layer affected by noise will be termed as noise-diffusion

layer. In the equation above, the set of neighbours of node i
on the communication layer is denoted by Ni, while the set

of neighbours of the same node on the noise-diffusion layer is

denoted by N ∗
i . Network (7) can be written in compact form

as dX = −σLXdt− σ∗L∗Xdb, where X := [x1, . . . , xN ]T ,

L is the Laplacian of the communication layer, and L∗ is the

Laplacian of the noise-diffusion layer. In what follows, we will

denote by λ∗
N the largest eigenvalue of L∗, while λ∗

2 will its

algebraic connectivity. We will also consider the case where

one network node of (7) is pinned (on the communication

layer) to an exogenous constant signal, xr ∈ R. Without loss

of generality, we can assume that the first network node is the

one pinned to xr. The resulting network model from (7) is

then

dx1 =
[

σ
∑

j∈N1
(xj − x1) + σε (xr − x1)

]

dt+

+
[

σ∗
∑

j∈N∗

1

(xj − x1)
]

db,

dxi =
[

σ
∑

j∈Ni
(xj − xi)

]

dt+ σ∗
∑

j∈N∗

i
(xj − xi) db,

(8)

∀i = 2, . . . , N . We say that (7) achieves stochastic consensus

if the following definition is fulfilled.

Definition 2. Let s̄ = 1
N

∑N
i=1 xi,0. We will say

that network (7) achieves stochastic consensus if

limt→+∞ sup 1
t log (|xi(t)− s̄|) < 0, a.s., ∀i = 1, . . . , N .

That is, Definition 2 essentially means that all the network

nodes (almost surely) agree onto the average of their initial

conditions. With the following definition, instead, the agree-

ment value will be the reference signal xr .

Definition 3. We will say that network (8)

achieves complete stochastic consensus onto xr if

limt→+∞ sup 1
t log (|xi(t)− xr|) < 0, a.s., ∀i = 1, . . . , N .

Consensus of Network (7)

Theorem 2. Assume that for network (7) the following con-

dition is satisfied: σ∗2
(

λ∗
2
2 − (λ∗

N )2

2

)

> −σλ2. Then, (7)

achieves complete stochastic consensus.

Proof. Let S := 1N ⊗ s̄ and let e = X − S. Then, the error

dynamics can be written as

de =
[

F̃ (t, e)
]

dt+
[

G̃(t, e)
]

db, (9)

where: (i) F̃ (t, e) = −σL(e + S) = −σLe; (ii) G̃(e) =
−σ∗L∗(e + S) = −σ∗L∗e. Note that e = 0 is the trivial

solution for (9) and thus we can use Theorem 1 to prove our

result. To this aim, let V (t, e) = V (e) = 1
2e

T e. Then, we need

to show that there exists c2 ∈ R, c3 ≥ 0, such that c3 > 2c2.

We will now estimate LV (e) and

∣

∣

∣
Ve(e)G̃(t, e)

∣

∣

∣

2

.

Estimate of LV (e). In order to compute this term,

first note that Vt(e) = 0. Let’s now compute the term

Ve(e)F̃ (t, e). We have Ve(e)F̃ (t, e) = −σeTLe. Moreover,

Ve(e)F̃ (t, e) ≤ −σmine6=0

{

eTLe
}

, and since eT 1N = 0,

then mine6=0

{

eTLe
}

= λ2e
T e. That is,

Ve(e)F̃ (t, e) ≤ −σλ2e
T e = 2(−σλ2)V (e). (10)

The next step to estimate LV (e) is that of computing
1
2 tr

{

G̃(e)TVeeG̃(e)
}

. Now, since Vee(e) = IN , such a

term becomes 1
2 tr

{

G̃(t, e)T G̃(t, e)
}

. Recall that for any

matrix, say A, we have ‖A‖2F = tr
{

ATA
}

. That is,
(

tr
{

(σ∗)2eT (L∗)T (L∗)e
})1/2

= σ∗ ‖L∗e‖F = σ∗ |L∗e|,
where the last equality follows from the fact that, for

any vector, say a, it holds that ‖a‖F = |a|. There-

fore, we have 1
2

(

tr
{

G̃(e)TVeeG̃(e)
})

= 1
2 (σ

∗)2 |L∗e|2 =
1
2 (σ

∗)2eT (L∗)T (L∗)e, from which we get

1

2
tr

{

G̃(t, e)TVeeG̃(t, e)
}

≤ (σ∗)2(λ∗
N )2V (e). (11)

Combining (11) and (10), we finally have LV (e) ≤
(

2 (−σλ2) + (σ∗)2(λ∗
N )2

)

V (e).

Estimate of

∣

∣

∣
Ve(e)G̃(t, e)

∣

∣

∣

2

. This follows after noticing

that

∣

∣

∣
Ve(e)G̃(t, e)

∣

∣

∣
= σ∗eTL∗e ≥ σ∗λ∗

2e
T e, and hence

∣

∣

∣
Ve(e)G̃(t, e)

∣

∣

∣

2

≥ (σ∗)2(λ∗
2)

2(eT e)2 = 4(σ∗)2(λ∗
2)

2V (e)2.

We can then conclude the proof by noticing that by

hypotheses 4(σ∗)2(λ∗
2)

2 > 2
(

2 (−σλ2) + (σ∗)2(λ∗
N )2

)

.

Therefore, by means of Theorem 1, we have that

limt→+∞ sup 1
t log (|e(t)|) < 0, a.s., proving the result.

Consensus of Network (8) onto xr

Let L̃ be the N × N matrix obtained from a network

Laplacian, L, as follows:

L̃ :=











l11 + ε l12 . . . l1N
l21 l22 . . . l2N
...

...
...

...

lN1 lN2 . . . lNN











,

with eigenvalues λ̃1 ≤ λ̃2 ≤ . . . ≤ λ̃N .

Theorem 3. Assume that for network (8) the following con-

dition is satisfied: σ∗2
(

λ∗
2
2 − (λ∗

N )2

2

)

> −σλ̃1. Then, (8)

achieves complete stochastic synchronisation onto xr.

Proof. Let ei := xi − xr. Then, we have de1 =
[

σ
∑

j∈N1
(ej − e1)− σεe1

]

dt +
[

σ∗
∑

j∈N∗

1

(ej − e1)
]

db,

dei =
[

σ
∑

j∈Ni
(ej − ei)

]

dt+σ∗
∑

j∈N∗

i
(ej − ei) db, ∀i =

2, . . . , N . Let: (i) Xr := 1N ⊗ xr; (ii) e = X − Xr. Then,
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the error dynamics can be written again in compact form as

(9), this time with F̃ (t, e) := −σL̃e and G̃(t, e) := −σ∗L∗e.

Note that e = 0 is again the trivial solution for the error

dynamics and thus we can use Theorem 1. To this aim, let

again V (t, e) = V (e) = 1
2e

T e.

Estimate of LV (e). In this case we have

Ve(e)F̃ (t, e) ≤ −σλ̃1e
T e = −2(σλ̃1)V (e). Moreover,

following similar steps used to prove Theorem 2 we get
1
2 tr

{

G̃(t, e)TVeeG̃(t, e)
}

≤ (σ∗)2(λ∗
N )2V (e). Therefore

LV (e) ≤
(

−2
(

σλ̃1

)

+ (σ∗)2(λ∗
N )2

)

V (e) := c2V (e).

Estimate of

∣

∣

∣
Ve(e)G̃(t, e)

∣

∣

∣

2

. We have

∣

∣

∣
Ve(e)G̃(t, e)

∣

∣

∣

2

≥

4(σ∗λ∗
2)

2
V (e)2.

The result is proved since, by hypotheses, 4(σ∗λ∗
2)

2
>

2
(

−2σλ̃1 + (σ∗)2(λ∗
N )2

)

.

CONVERGENCE OF THE SASS

We show that convergence of the SASs immediately follows

from Theorem 2 and Theorem 3. To this aim, let vi be the

speed of the i-th vehicle receiving signals from the base

station. Then, the dynamics of the speed is governed by

v̇i = ui(t), (12)

where ui(t) is computed following: (i) Equations (1), (2) and

(3) for the leaderless SAS; (ii) Equations (5), (2) and (3) for

the SAS with leader. The results proven in the appendix are

valid for any number of nodes N > 1 and hence convergence

of the SASs is guaranteed for any number of vehicles.

Convergence of the Leaderless SAS

Corollary 1. Assume that network (12) is controlled by

ui(t) computed following (1), (2) and (3). Then, the network

achieves consensus.

Proof. The proof immediately follows by noticing that the

dynamics of network (12) can be recast as the following

stochastic differential equation dv = −Lvdt − σ∗L∗vdb,
with v := [v1, . . . , vN ]T , and where: (i) L is the Laplacian

matrix generated by (1); (ii) L∗ is the Laplacian matrix

generated by (2); (iii) db is a standard Brownian motion

and it can be thought of as the derivative of the white

noise (of intensity σ∗) injected by the base station, i.e. w(t).
Specifically, note that: (i) the network generated by (1) is

connected (λ2 > 0); (ii) the network generated by (2)

has λ∗
2 = λ∗

N = N . Now, the proof follows immediately

by noticing that (σ∗)2
(

(λ∗
2)

2 −
(λ∗

N )2

2

)

= (σ∗)2 N2

2 > 0.

Therefore, since λ2 is positive, then the condition of Theorem

2 is satisfied. The result is then proved.

Convergence of the SAS with Leader

Corollary 2. Assume that network (12) is controlled by

ui(t) computed following (5), (2) and (3). Then, the network

achieves consensus onto vref .

Proof. In order to prove this result, notice that network dy-

namics can be written as dv = −L̃vdt − σ∗L∗vdb, where

this time L̃ is the Laplacian matrix generated by (5). Note

that, in this special case, the N × N matrix L̃ is given by:

L̃ =











ε 0 . . . 0
0 . . . . . . 0
...

...
...

...

0 . . . . . . 0











. Hence, 0 = λ̃1 = . . . = λ̃N−1 <

λ̃N = ε. Thus, λ̃1 = 0 while λ∗
2 = λ∗

N = N . Since

(σ∗)2
(

(λ∗
2)

2 −
(λ∗

N )2

2

)

= (σ∗)2 N2

2 > 0, then the condition

of Theorem 3 is satisfied. The result is then proved.

Finally we remark that, from the theoretical viewpoint,

as shown in Corollary 1 and Corollary 2, convergence of

the SASs is independent of the intensity of the noise being

injected (i.e. on σ∗). However, in simulations, we found that

convergence of the SASs depended on the specific numerical

method being used and on its time-step [43].
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