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Abstract

“Mixedness” is a property that captures elements of the notions of passivity and
small gain. In the frequency domain, a linear, time-invariant system is called “mixed”
if, over some frequency bands, it is strictly passive and, over the remaining frequencies,
it has a gain of less than one; there exist no frequencies over which the system has
neither of the notions of these properties associated with it. In this paper, a test is
developed for determining whether or not a linear, time-invariant system is “mixed.”

1 Introduction

Two important results in the input-output stability theory literature are the small gain and
the passivity theorems. The small gain theorem states that if the product of the gains of
two stable systems, interconnected via a negative feedback loop, is less than one then the
interconnection is stable [1–4]. The passivity theorem guarantees stability of the negative
feedback interconnection if, for instance, both of the systems are passive and one of them
is input strictly passive with finite gain [1–3, 5]. Circumstances in which the small gain or
passivity properties fail to adequately describe a system in question suggest that alternative
assumptions may need to be placed on the systems in the interconnection such that stability
might be determined.

High frequency dynamics which might destroy the passivity properties of an otherwise
passive system lead us to an example of the notion of a “mixed” system provided that, at
those destructive high frequency dynamics, the system has a small gain. More generally,
in the linear, time-invariant (LTI) case, a system is called “mixed” if, over some frequency
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bands, it has the property of being input and output strictly “passive” and, over the remain-
ing frequencies, it has a “gain” of less than one; there exist no frequencies over which the
system has neither of these property notions associated with it. “Mixed” systems were ini-
tially discussed in [6,7] (and in the nonlinear case in the time domain in [8,9]) in a dissipative
systems’ framework [10, 11].

The objective of this paper is to present a necessary and sufficient test for determining
whether or not a multi-input, multi-output (MIMO) LTI system is “mixed.” The procedure
involves the computation of two Hamiltonian matrices, one associated with any potentially
passive aspects of the system and the other associated with the notion of system small
gain. The examination of the spectral characteristics of these Hamiltonian matrices, which
are constructed from state-space data, leads to the elimination of an element of frequency-
dependency from the test. The purely imaginary eigenvalues of the Hamiltonian matrices
correspond exactly to the frequencies at which zero eigenvalues of certain transfer function
matrices typically associated with system passivity and system small gain occur. Testing the
sign definiteness of these transfer function matrices at a single frequency point on either side
of the frequencies which give rise to the zero eigenvalues yields whether or not the system is
“mixed.” Spectral conditions for positive realness of transfer function matrices are discussed
in [12] and, for more general frequency domain inequalities, in [13].

The paper is divided into the following sections. The notion of a “mixed” system is
defined in Section 2. In Section 3, system state-space descriptions are utilised to compute two
Hamiltonian matrices and derive associated results which are required for the “mixedness”
test described in Section 4. Examples are provided in Section 5.

1.1 Notation

The results of this paper are concerned with LTI systems viewed in the frequency domain.
R denotes the set of proper real rational transfer function matrices. For a transfer function
matrix G(s) ∈ R, G∼(s) is defined to mean GT (−s) and G∗(jω) := G∼(jω). L∞ is a Banach
space of matrix- (or scalar-) valued functions that are essentially bounded on jR. The Hardy
space, H∞, is the closed subspace of L∞ with functions that are analytic and bounded in
the open right-half plane. In other words, H∞ is the space of transfer functions of stable,
LTI, continuous-time systems. RH∞ denotes the subspace of H∞ whose transfer function
matrices are proper and real rational. The notation A ∈ RHm×n

∞
will be used to indicate

such matrices with m rows and n columns.

2 Definitions and Problem Description

Consider a causal system with square transfer function matrix M ∈ RHm×m
∞

. Consider a
closed frequency interval [a, b], where a, b ∈ R.
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Definition 1. A causal system with transfer function matrix M ∈ RHm×m
∞

is said to be
input and output strictly passive over the frequency interval [a, b] if there exist k, l > 0 such
that

−kM∗(jω)M(jω) +M∗(jω) +M(jω)− lI ≥ 0

for all ω ∈ [a, b].

Additionally, we will say that the system is input strictly passive over the frequency
interval [a, b] if Definition 1 is satisfied with k = 0; output strictly passive over the frequency
interval [a, b] if Definition 1 is satisfied with l = 0; and passive over the frequency interval
[a, b] if Definition 1 is satisfied with k = l = 0. Definition 1 requires a and b to be finite. In
Definition 2, this requirement is relaxed.

Definition 2. Suppose that limω→±∞ det(M∗(jω) + M(jω)) 6= 0.1 A causal system with
transfer function matrix M ∈ RHm×m

∞
is said to be input and output strictly passive over

the frequency interval (−∞, a], [b,∞) or (−∞,∞) if there exist k, l > 0 such that

−kM∗(jω)M(jω) +M∗(jω) +M(jω)− lI ≥ 0

for all ω ∈ (−∞, a], [b,∞) or (−∞,∞), respectively.

Definition 3. Define the system gain over the frequency interval [a, b] as

ǫ := min{ǭ ∈ R+ : −M∗(jω)M(jω) + ǭ2I ≥ 0 for all ω ∈ [a, b]}.

The system is said to have a gain of less than one over the frequency interval [a, b] if ǫ < 1.

Definition 4. Suppose that limω→±∞ det(−M∗(jω)M(jω) + I) 6= 0.2 Define the system
gain over the frequency interval (−∞, a], [b,∞) or (−∞,∞) as

ǫ := inf{ǭ ∈ R+ : −M∗(jω)M(jω) + ǭ2I ≥ 0 for all ω ∈ (−∞, a], [b,∞)

or (−∞,∞), respectively}.

The system is said to have a gain of less than one over the frequency interval (−∞, a], [b,∞)
or (−∞,∞), respectively, if ǫ < 1.

We now define a “mixed” system.

Definition 5. A causal system with transfer function matrix M ∈ RHm×m
∞

is said to be
“mixed” if, for each frequency ω ∈ R: either (i)−kM∗(jω)M(jω)+M∗(jω)+M(jω)−lI ≥ 0;
and/or (ii) −M∗(jω)M(jω) + ǫ2I ≥ 0. The constants k, l > 0 and ǫ < 1 are independent of
ω.

1More specifically, suppose that limω→±∞ det(M∗(jω) +M(jω)) = cp > 0, where cp ∈ R.
2More specifically, suppose that limω→±∞ det(−M∗(jω)M(jω) + I) = cs > 0, where cs ∈ R.
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Examples of “mixed” systems are systems with the transfer functions

m1(s) =
3s+ 2

s+ 5
, m2(s) =

2s− 1

2s+ 4

and

m3(s) =
3

(s+ 1)(s+ 2)
.

The systems described by the transfer functions

m4(s) =
2s− 3

s + 4

and

m5(s) =
10

(s+ 1)(s+ 2)

are not “mixed.” To illustrate, consider the Nyquist diagrams of m2(s) and m5(s) as shown
in Figures 1 and 2 below. From Figure 1, it is evident that there exists some frequency Ω
such that the system described by the transfer function m2(s) is input and output strictly
passive over the frequency ranges (−∞,−Ω] and [Ω,∞) and has a gain of less than one over
the frequency range [−Ω,Ω]. For instance, one could take Ω = 3. This is not the case for
the system described by the transfer function m5(s).
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Figure 1: Nyquist diagram of m2(s).
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Figure 2: Nyquist diagram of m5(s).

Remark 1. The requirement that a system is input and output strictly passive over all
frequencies ω ∈ R is typically a severe restriction, rarely satisfied by physical systems [2,
Section 8.6]. No strictly proper system satisfies this requirement. However, a strictly proper
system can be “mixed.”

Remark 2. We note the following:

• there exist k, l > 0 such that −kM∗(jω)M(jω) + M∗(jω) + M(jω) − lI ≥ 0 for all
ω ∈ [a, b] if and only if M∗(jω) +M(jω) > 0 for all ω ∈ [a, b];

• under the assumption that limω→±∞ det(M∗(jω) + M(jω)) 6= 0, there exist k, l > 0
such that −kM∗(jω)M(jω) +M∗(jω) +M(jω)− lI ≥ 0 for all ω ∈ (−∞, a], [b,∞) or
(−∞,∞) if and only if M∗(jω) +M(jω) > 0 for all ω ∈ (−∞, a], [b,∞) or (−∞,∞),
respectively;

• there exists ǫ < 1 such that −M∗(jω)M(jω) + ǫ2I ≥ 0 for all ω ∈ [a, b] if and only if
−M∗(jω)M(jω) + I > 0 for all ω ∈ [a, b];

• under the assumption that limω→±∞ det(−M∗(jω)M(jω) + I) 6= 0, there exists ǫ < 1
such that −M∗(jω)M(jω) + ǫ2I ≥ 0 for all ω ∈ (−∞, a], [b,∞) or (−∞,∞) if and
only if −M∗(jω)M(jω) + I > 0 for all ω ∈ (−∞, a], [b,∞) or (−∞,∞), respectively.
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Then, for example, provided that limω→±∞ det(M∗(jω) +M(jω)) 6= 0 and limω→±∞ det
(−M∗(jω)M(jω) + I) 6= 0, the following holds. The proof follows directly from Remark 2
and Definition 5.

Lemma 1. Suppose that limω→±∞ det(M∗(jω) + M(jω)) 6= 0 and limω→±∞ det(−M∗(jω)
M(jω) + I) 6= 0. Then a causal system with transfer function matrix M ∈ RHm×m

∞
is

“mixed” if and only if, at each frequency ω ∈ R, either M∗(jω) + M(jω) > 0 and/or
−M∗(jω)M(jω) + I > 0.

We now construct a test for determining whether or not a given system is “mixed.” For
single-input, single-output (SISO) LTI systems, the development of such a test is in one
sense redundant as one can, for example, examine the properties of the candidate system
graphically via its Nyquist plot. However, analytic tests of “mixedness” for MIMO, LTI
systems (and eventually, tests for nonlinear systems) are potentially more useful. In this
paper, we explore the MIMO, LTI case.

3 State-Space Descriptions and Hamiltonian Matrices

Suppose that one is given a causal system with stable, square transfer function matrix
M = C(sI −A)−1B +D which is described by the equations

ẋ = Ax+Be, x(t0) = x0,

y = Cx+De,

where x(t) ∈ Rn, e(t) ∈ Rm, y(t) ∈ Rm and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m

with A Hurwitz.

From Definitions 1 and 2, −kM∗(jω)M(jω) +M∗(jω) +M(jω)− lI ≥ 0 can be written
as

− k(B∗(jωI −A)−∗C∗ +D∗)(C(jωI − A)−1B +D) +B∗(jωI − A)−∗C∗ +D∗

+ C(jωI − A)−1B +D − lI ≥ 0.

Noting that (jω)∗ = −jω gives

− k(−BT (jωI + AT )−1CT +DT )(C(jωI − A)−1B +D)− BT (jωI + AT )−1CT +DT

+ C(jωI − A)−1B +D − lI ≥ 0.

A final rearrangement gives G1(jω) ≥ 0, where

G1(jω) :=
(

(I − kD)TC −BT
)

[

jωI −

(

A 0
−kCTC −AT

)]−1(

B

CT (I − kD)

)

− kDTD +DT +D − lI.
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Similarly, −M∗(jω)M(jω) + ǫ2I ≥ 0 from Definitions 3 and 4 may be written as

−(B∗(jωI − A)−∗C∗ +D∗)(C(jωI −A)−1B +D) + ǫ2I ≥ 0.

Again, noting that (jω)∗ = −jω gives

−(−BT (jωI + AT )−1CT +DT )(C(jωI − A)−1B +D) + ǫ2I ≥ 0

and a final rearrangement gives G2(jω) ≥ 0, where

G2(jω) :=
(

−DTC −BT
)

[

jωI −

(

A 0
−CTC −AT

)]−1(

B

−CTD

)

−DTD + ǫ2I.

The matrices G1(jω) and G2(jω) are Hermitian matrices and so have real eigenvalues. Note
the following two results.

Lemma 2. Suppose k, l ∈ R. The matrix −kM∗(jω)M(jω) + M∗(jω) + M(jω) − lI has
no zero eigenvalues over ω ∈ [a, b] if and only if H1 does not have any eigenvalues on the
imaginary axis between and including −ja and −jb, where

H1 :=

(

−A+BX−1

1 Y TC −BX−1

1 BT

kCTC + CTY X−1

1 Y TC AT − CTY X−1

1 BT

)

,

X1 := −kDTD +DT +D − lI is invertible and Y := I − kD.

Proof. Assume that X1 := −kDTD +DT +D − lI is invertible, ie: det(X1) 6= 0. Then, in
the manner of [12, Lemma 1],

det(G1(jω))

= det

{

(

Y TC −BT
)

[

jωI −

(

A 0
−kCTC −AT

)]−1(

B

CTY

)

+X1

}

= det(X1) det

{

I +

[

jωI −

(

A 0
−kCTC −AT

)]−1(

B

CTY

)

(

X−1

1 Y TC −X−1

1 BT
)

}

= det(X1) det{(jωI −A)−1} det{(jωI + AT )−1} det(jωI +H1).

Since A is Hurwitz (ie: has no purely imaginary eigenvalues), then det(jωI − A) 6= 0 for
all ω ∈ R. The matrix jωI − A is invertible and so det{(jωI − A)−1} 6= 0. Similarly,
det{(jωI + AT )−1} 6= 0 noting that

(−1)n{det(jωI − A)}∗ = det(jωI + AT ).

Thus, G1(jω) has a zero eigenvalue if and only if det(jωI + H1) = 0, ie: H1 has a purely
imaginary eigenvalue. Additionally, of interest are only the frequencies ω ∈ [a, b]; corre-
spondingly, eigenvalues of H1 that lie on the imaginary axis between and including −ja and
−jb.
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Lemma 3. Suppose ǫ ∈ R. The matrix −M∗(jω)M(jω) + ǫ2I has no zero eigenvalues over
ω ∈ [a, b] if and only if H2 does not have any eigenvalues on the imaginary axis between and
including −ja and −jb, where

H2 :=

(

−A−BX−1

2 DTC −BX−1

2 BT

CTC + CTDX−1

2 DTC AT + CTDX−1

2 BT

)

and X2 := −DTD + ǫ2I is invertible.

Proof. The proof follows in the same manner as the proof of Lemma 2, ie: assume that
X2 := −DTD + ǫ2I is invertible. Then

det(G2(jω))

= det

{

(

−DTC −BT
)

[

jωI −

(

A 0
−CTC −AT

)]−1(

B

−CTD

)

+X2

}

= det(X2) det

{

I +

[

jωI −

(

A 0
−CTC −AT

)]−1(

B

−CTD

)

(

−X−1

2 DTC −X−1

2 BT
)

}

= det(X2) det{(jωI − A)−1} det{(jωI + AT )−1} det(jωI +H2).

Since A is Hurwitz, then det{(jωI − A)−1} 6= 0 and det{(jωI + AT )−1} 6= 0 for all ω ∈
R. Thus, G2(jω) has a zero eigenvalue if and only if det(jωI + H2) = 0, ie: H2 has a
purely imaginary eigenvalue. Of interest are only the frequencies ω ∈ [a, b]; correspondingly,
eigenvalues of H2 that lie on the imaginary axis between and including −ja and −jb.

4 A Test for “Mixedness”

Given a system state-space description as described in Section 3, we wish to determine
whether or not the system is “mixed.” The aim is to construct a transfer function matrix
M(s) from the state-space data and determine whether or not there exist k, l > 0 and ǫ < 1
such that (i) and/or (ii) from Definition 5 hold for each frequency ω ∈ R. (Additionally, if
limω→±∞ det(M∗(jω)+M(jω)) 6= 0 and/or limω→±∞ det(−M∗(jω)M(jω)+ I) 6= 0, then we
can use Remark 2 to eliminate the parameters k, l and/or ǫ from the search.) To eliminate
an element of frequency-dependency from the test, however, we can choose to utilise the
state-space data directly and apply Lemmas 2 and 3.

Thus, the first step of the test is to compute the matrices H1 and H2 (where X1 and
X2 are constructed such that they are invertible) for k, l ≥ 0 and ǫ ≤ 1 and then cal-
culate the eigenvalues of these matrices. Existences of purely imaginary eigenvalues indi-
cate those frequencies at which the matrices −kM∗(jω)M(jω) +M∗(jω) +M(jω)− lI and
−M∗(jω)M(jω) + ǫ2I have zero eigenvalues.

If there exist frequencies at which −kM∗(jω)M(jω)+M∗(jω)+M(jω)−lI has zero eigen-
values then we divide the frequency range (−∞,∞) up into intervals with the frequencies

8



corresponding to the zero eigenvalues as the interval endpoints. (If there exist no frequencies
at which −kM∗(jω)M(jω) +M∗(jω) +M(jω) − lI has zero eigenvalues then we leave the
frequency range (−∞,∞) intact and think of it as a single “division.”) Similarly, a separate
set of divisions of the frequency range (−∞,∞) can be made based on the frequencies at
which −M∗(jω)M(jω) + ǫ2I has zero eigenvalues. (Again, the frequency range (−∞,∞) is
left intact if there exist no frequencies at which −M∗(jω)M(jω)+ ǫ2I has zero eigenvalues.)
We now have two different sets of frequency range divisions: Set of Divisions 1 and Set of
Divisions 2.

Finally, we check the sign definiteness of the matrix−kM∗(jω)M(jω)+M∗(jω)+M(jω)−
lI over each interval belonging to Set of Divisions 1 and the sign definiteness of the matrix
−M∗(jω)M(jω) + ǫ2I over each interval belonging to Set of Divisions 2. Testing at one
frequency (eg: at the midpoint) per interval is sufficient. Those intervals over whichM∗(jω)+
M(jω) > 0 (if limω→±∞ det(M∗(jω) +M(jω)) 6= 0; alternatively, those intervals over which
−kM∗(jω)M(jω) + M∗(jω) + M(jω) − lI ≥ 0, where k, l > 0) and those intervals over
which −M∗(jω)M(jω) + I > 0 (if limω→±∞ det(−M∗(jω)M(jω) + I) 6= 0; alternatively,
those intervals over which −M∗(jω)M(jω) + ǫ2I ≥ 0, where ǫ < 1) are identified and we
determine whether or not there exists some combination of these intervals that spans the
entire frequency range. For instance, suppose that limω→±∞ det(M∗(jω) +M(jω)) 6= 0 and
limω→±∞ det(−M∗(jω)M(jω) + I) 6= 0. If M∗(jω) +M(jω) > 0 and/or −M∗(jω)M(jω) +
I > 0 for each ω ∈ R then the system is “mixed.” If, for some ω ∈ R, bothM∗(jω)+M(jω) ≯
0 and −M∗(jω)M(jω) + I ≯ 0 then the system is not “mixed.”

We now briefly describe the test in an algorithmic form. First, set tolk, toll and tolǫ
to some appropriate values. Tolk and toll should be small (ie: close to zero) and strictly
positive. Tolǫ should be close to and strictly less than one.

1. (a) If limω→±∞ det(M∗(jω) +M(jω)) 6= 0:

i. Set k = l = 0.

ii. Compute H1; calculate its eigenvalues. Denote any purely imaginary eigen-
values by ±jωi and order these purely imaginary eigenvalues such that −ωp ≤
· · · ≤ −ω1 ≤ ω1 ≤ · · · ≤ ωp, where i = 1, . . . , p.

iii. If H1 has purely imaginary eigenvalues, let Set of Divisions 1 be {(−∞,−ωp),
(−ωp,−ωp−1), . . . , (−ω1, ω1), . . . , (ωp−1, ωp), (ωp,∞)}. Else, let Set of Divi-
sions 1 be {(−∞,∞)}. Set of Divisions 1 now contains at most 2p + 1
frequency bands. Select a candidate testing frequency from each of these
bands.

iv. At each candidate testing frequency, compute the sign definiteness ofM∗(jω)+
M(jω). Collect together those frequency bands containing test frequencies at
which M∗(jω)+M(jω) > 0 into a new set of frequency bands called Revised
Set of Divisions 1. Go to Step 2.

(b) Else, if limω→±∞ det(M∗(jω) +M(jω)) = 0:
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i. Set k, l small and strictly positive (such that k ≥ tolk and l ≥ toll).

ii. Compute H1; calculate its eigenvalues. Denote any purely imaginary eigen-
values by ±jωi and order these purely imaginary eigenvalues such that −ωp ≤
· · · ≤ −ω1 ≤ ω1 ≤ · · · ≤ ωp, where i = 1, . . . , p.

iii. If H1 has purely imaginary eigenvalues, let Set of Divisions 1 be {(−∞,−ωp],
[−ωp,−ωp−1], . . . , [−ω1, ω1], . . . , [ωp−1, ωp], [ωp,∞)}. Else, let Set of Divisions
1 be {(−∞,∞)}. Set of Divisions 1 now contains exactly 2p + 1 frequency
bands. Select a candidate testing frequency from each of these bands.

iv. At each candidate testing frequency, compute the sign definiteness of −kM∗

(jω)M(jω) +M∗(jω) +M(jω)− lI. Collect together those frequency bands
containing test frequencies at which −kM∗(jω)M(jω) +M∗(jω) +M(jω)−
lI ≥ 0 into a new set of frequency bands called Revised Set of Divisions 1.
Go to Step 2.

2. (a) If limω→±∞ det(−M∗(jω)M(jω) + I) 6= 0:

i. Set ǫ = 1.

ii. Compute H2; calculate its eigenvalues. Denote any purely imaginary eigen-
values by ±jωi and order these purely imaginary eigenvalues such that −ωq ≤
· · · ≤ −ω1 ≤ ω1 ≤ · · · ≤ ωq, where i = 1, . . . , q.

iii. If H2 has purely imaginary eigenvalues, let Set of Divisions 2 be {(−∞,−ωq),
(−ωq,−ωq−1), . . . , (−ω1, ω1), . . . , (ωq−1, ωq), (ωq,∞)}. Else, let Set of Divi-
sions 2 be {(−∞,∞)}. Set of Divisions 2 now contains at most 2q + 1
frequency bands. Select a candidate testing frequency from each of these
bands.

iv. At each candidate testing frequency, compute the sign definiteness of−M∗(jω)
M(jω)+I. Collect together those frequency bands containing test frequencies
at which −M∗(jω)M(jω) + I > 0 into a new set of frequency bands called
Revised Set of Divisions 2. Go to Step 3.

(b) Else, if limω→±∞ det(−M∗(jω)M(jω) + I) = 0:

i. Set ǫ close to and strictly less than one (such that ǫ ≤ tolǫ).

ii. Compute H2; calculate its eigenvalues. Denote any purely imaginary eigen-
values by ±jωi and order these purely imaginary eigenvalues such that −ωq ≤
· · · ≤ −ω1 ≤ ω1 ≤ · · · ≤ ωq, where i = 1, . . . , q.

iii. If H2 has purely imaginary eigenvalues, let Set of Divisions 2 be {(−∞,−ωq],
[−ωq,−ωq−1], . . . , [−ω1, ω1], . . . , [ωq−1, ωq], [ωq,∞)}. Else, let Set of Divisions
2 be {(−∞,∞)}. Set of Divisions 2 now contains exactly 2q + 1 frequency
bands. Select a candidate testing frequency from each of these bands.

iv. At each candidate testing frequency, compute the sign definiteness of−M∗(jω)
M(jω)+ ǫ2I. Collect together those frequency bands containing test frequen-
cies at which −M∗(jω)M(jω) + ǫ2I ≥ 0 into a new set of frequency bands
called Revised Set of Divisions 2. Go to Step 3.
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3. Collate Revised Set of Divisions 1 and Revised Set of Divisions 2:

(a) If Revised Set of Divisions 1 ∪ Revised Set of Divisions 2 = R, then the system
is “mixed.” End.

(b) Else, if limω→±∞ det(M∗(jω) +M(jω)) 6= 0 and limω→±∞ det(−M∗(jω)M(jω) +
I) 6= 0 and Revised Set of Divisions 1 ∪ Revised Set of Divisions 2 6= R, then the
system is not “mixed.” End.

(c) Else, if limω→±∞ det(M∗(jω) + M(jω)) = 0 and Revised Set of Divisions 1 ∪
Revised Set of Divisions 2 6= R and k > tolk and/or l > toll, then try a smaller,
strictly positive k and/or a smaller, strictly positive l (provided that this new k ≥
tolk and/or this new l ≥ toll). Go to Step 1(b)ii. (Otherwise, go to Step 3(d).)

(d) Else, if limω→±∞ det(−M∗(jω)M(jω) + I) = 0 and Revised Set of Divisions 1
∪ Revised Set of Divisions 2 6= R and ǫ < tolǫ, then try a larger ǫ, strictly less
than one (provided that this new ǫ ≤ tolǫ). Go to Step 2(b)ii. Otherwise, make a
decision on the “mixedness” of the system (eg: see Section 5, Example 3). End.

5 Examples

The following examples illustrate various aspects of the test.

Example 1. (SISO, “mixed” system) Given the state-space data A = −5, B = 4,
C = −3.25 andD = 3 from which the transfer functionm1(s) in Section 2 can be constructed,
and setting k = l = 0 and ǫ = 1, we obtain

H1 =

(

2.8333 −2.6667
1.7604 −2.8333

)

and H2 =

(

0.1250 2.0000
−1.3203 −0.1250

)

.

(noting that, as ω → ±∞, m∗

1(jω) + m1(jω) 6= 0 and m∗

1(jω)m1(jω) 6= 1). The matrix
H1 does not have any purely imaginary eigenvalues which means that the sign definite-
ness of m∗

1(jω) + m1(jω) will remain the same over the entire frequency range (−∞,∞).
Since m1(j0)

∗ +m1(j0) > 0, the system is input and output strictly passive over (−∞,∞)
and is hence “mixed.” We do not need to check the sign definiteness of the function
−m∗

1(jω)m1(jω) + 1. See Figure 3 for an illustration of the system’s frequency response.

Example 2. (SISO system, not “mixed”) Given the state-space data A = −4, B =
4, C = −2.75 and D = 2 from which the transfer function m4(s) in Section 2 may be
constructed, and setting k = l = 0 and ǫ = 1, we obtain

H1 =

(

1.25 −4
1.890625 −1.25

)

and H2 =

(

−3.3̇ 5.3̇
−2.52083̇ 3.3̇

)

(noting that, as ω → ±∞, m∗

4(jω) +m4(jω) 6= 0 and m∗

4(jω)m4(jω) 6= 1). The matrix H1

has two purely imaginary eigenvalues, ±j2.4495. Breaking the frequency range (−∞,∞) up

11
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Figure 3: Nyquist diagram of m1(s).

into the intervals (−∞,−2.4495), (−2.4495, 2.4495) and (2.4495,∞) and examining the sign
definiteness of m∗

4(jω) + m4(jω) at some single frequency point from within each of these
intervals (eg: at ω = −4, 0, 4) yields m4(−j4)∗ + m4(−j4) > 0, m4(j0)

∗ +m4(j0) ≯ 0 and
m4(j4)

∗+m4(j4) > 0. Thus, the system is passive over (−∞,−2.4495] and [2.4495,∞) and
a system gain of less than one over [−2.4495, 2.4495] is required in order for it to be “mixed.”
This requirement is not met, as follows.

The matrix H2 has two purely imaginary eigenvalues, ±j1.5275. Observing the sign
definiteness of −m∗

4(jω)m4(jω) + 1 at a single frequency point from within each of the
intervals (−∞,−1.5275), (−1.5275, 1.5275) and (1.5275,∞) (eg: at ω = −2, 0, 2) yields
−m4(−j2)∗m4(−j2) + 1 ≯ 0, −m4(j0)

∗m4(j0) + 1 > 0 and −m4(j2)
∗m4(j2) + 1 ≯ 0. Thus,

the system has a gain of less than or equal to one over the frequency interval [−1.5275, 1.5275]
as opposed to a gain of less than one over the (larger) frequency interval [−2.4495, 2.4495]
(that is, there exist frequencies at which both m∗

4(jω) +m4(jω) ≯ 0 and −m∗

4(jω)m4(jω) +
1 ≯ 0). Hence, the system is not “mixed.” See Figure 4 for an illustration of the system’s
frequency response.

Example 3. (SISO, “mixed” strictly proper system) Consider the state-space descrip-
tion

A =

(

−3 −2
1 0

)

, B =

(

2
0

)

, C =
(

0 1.5
)

, D = 0

from which the strictly proper transfer function m3(s) in Section 2 can be constructed.

12
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Figure 4: Nyquist diagram of m4(s).

Setting ǫ = 1, we obtain

H2 =









3 2 −4 0
−1 0 0 0
0 0 −3 1
0 2.25 −2 0









which has two purely imaginary eigenvalues, ±j0.924. Breaking the frequency range (−∞,∞)
up into the intervals (−∞,−0.924), (−0.924, 0.924) and (0.924,∞) and examining the sign
definiteness of −m∗

3(jω)m3(jω) + 1 at a single frequency point from within each of these
intervals (eg: at ω = −1, 0, 1) yields −m3(−j1)∗m3(−j1) + 1 > 0, −m3(j0)

∗m3(j0) + 1 ≯ 0
and −m3(j1)

∗m3(j1) + 1 > 0. Thus, the system does not have a gain of less than one over
[−0.924, 0.924] and must be input and output strictly passive over this interval if it is to be
“mixed.”

The difficulty with setting k = l = 0 and applying Lemma 2 to determine the zeros of the
function m∗

3(jω)+m3(jω) is that the system is strictly proper and hence DT +D = 0 is not
invertible. In this example, the difficulty is overcome by setting k and l to be decreasingly
smaller values but not equal to zero which, by continuity, will provide us with an indication
of those frequencies at which the system isn’t input and output strictly passive anymore but
is passive. First, note that m3(j0)

∗ + m3(j0) > 0. Table 1 lists the frequencies at which
−km∗

3(jω)m3(jω) + m∗

3(jω) + m3(jω) − lI has zero eigenvalues (ie: the frequencies which
correspond to the purely imaginary eigenvalues of H1) for decreasingly smaller values of k
and l. As k, l → 0, these frequencies approach ±1.414 which indicates that the system is
input and output strictly passive over (−1.414, 1.414). Since [−0.924, 0.924] is a subset of

13



k l ωH1

0.01 0.01 ±1.398
0.001 0.001 ±1.413
0.0001 0.0001 ±1.414

Table 1: Zeros of G1(jω).

(−1.414, 1.414) then the system is “mixed.” The frequency response of the system is depicted
in Figure 5.

Real Axis

Im
ag

in
ar

y 
A

xi
s

−1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

System: m3
Real: 4.33e−017
Imag: 0.707
Frequency (rad/sec): −1.41

System: m3
Real: 4.33e−017
Imag: −0.707
Frequency (rad/sec): 1.41

System: m3
Real: 0.384
Imag: 0.923
Frequency (rad/sec): −0.924

System: m3
Real: 0.384
Imag: −0.923
Frequency (rad/sec): 0.924

Figure 5: Nyquist diagram of m3(s).

Example 4. (MIMO system, not “mixed”) Given the state-space data

A =









0 −2 0 0
1 −3 0 0
0 0 −5 0
0 0 0 −1









, B =









0.75 2.5
0 0
4 0
0 1









, C =

(

0 4 0 0
0 0 −3.25 1

)

and

D =

(

0 0
3 0

)

from which the transfer function matrix

M(s) =





3
(s+ 1)(s+ 2)

10
(s+ 1)(s+ 2)

3s+ 2
s+ 5

1
s+ 1





14



can be constructed, and setting k = l = 0 and ǫ = 1, we obtain

H1 =

























0 5.3333 −0.8125 0.25 −1.25 0 −3.3333 −0.25
−1 3 0 0 0 0 0 0
0 0 0.6667 1.3333 −3.3333 0 0 −1.3333
0 1.3333 0 1 −0.25 0 −1.3333 0
0 0 0 0 0 1 0 0
0 0 −4.3333 1.3333 −5.3333 −3 0 −1.3333
0 −4.3333 0 0 0.8125 0 −0.6667 0
0 1.3333 0 0 −0.25 0 −1.3333 −1

























and

H2 =

























0 2 −0.9141 0.2813 −6.1797 0 0.375 −2.5
−1 3 0 0 0 0 0 0
0 0 0.125 1.5 0.375 0 2 0
0 0 0 1 −2.5 0 0 −1
0 0 0 0 0 1 0 0
0 16 0 0 −2 −3 0 0
0 0 −1.3203 0.4063 0.9141 0 −0.125 0
0 0 0.4063 −0.125 −0.2813 0 −1.5 −1

























(noting that limω→±∞ det(M∗(jω)+M(jω)) 6= 0 and limω→±∞ det(−M∗(jω)M(jω)+I) 6= 0).
The matrix H1 does not have any purely imaginary eigenvalues which means that the sign
definiteness of M∗(jω)+M(jω) is the same over the entire frequency range (−∞,∞). Since
M(j0)∗ +M(j0) ≯ 0, we require that the system has a gain of less than one over (−∞,∞)
in order for it to be “mixed.” Unfortunately, this is not the case. The matrix H2 has four
purely imaginary eigenvalues, ±j1.67 and ±j2.72. Breaking the frequency range (−∞,∞)
up into the intervals (−∞,−2.72), (−2.72,−1.67), (−1.67, 1.67), (1.67, 2.72) and (2.72,∞)
and examining the sign definiteness of −M∗(jω)M(jω) + I at a single frequency point from
within each of these intervals (eg: at ω = −3,−2, 0, 2, 3) yields that −M(j0)∗M(j0) + I is
an indefinite matrix, for example, and thus that the system is not “mixed.”

6 Conclusions

A necessary and sufficient test for determining whether or not a causal, stable, MIMO, LTI
system is “mixed” was developed. Implementation of the test is based on determining the
purely imaginary eigenvalues of Hamiltonian matrices.
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