
Interconnections of Nonlinear Systems with

“Mixed” Small Gain and Passivity Properties

and Associated Input-Output Stability

Results ?

Wynita M. Griggs a,∗,1, Brian D. O. Anderson b,
Alexander Lanzon c,2, Michael C. Rotkowitz d,2

aHamilton Institute, National University of Ireland, Maynooth, Co. Kildare,
Ireland

bDepartment of Information Engineering, Research School of Information Sciences
and Engineering, The Australian National University, Canberra ACT 0200,

Australia
cControl Systems Centre, School of Electrical and Electronic Engineering,
University of Manchester, Sackville Street, Manchester M60 1QD, UK

dDepartment of Electrical and Electronic Engineering, Melbourne School of
Engineering, The University of Melbourne, Melbourne VIC 3010, Australia

Abstract

A negative feedback interconnection consisting of two causal, nonlinear systems is
shown to be input-output stable when a “mixed” small gain and passivity assump-
tion is placed on each of the systems. The “mixed” small gain and passivity property
captures the well-known notions of passivity and small gain associated with systems:
the property can be appropriately reduced to an input and output strictly passive
system description; or alternatively, can be reduced to a description of a system with
small gain. More importantly, the property captures the concept of a “blending” of
the small gain and passivity ideas. This concept of “blending” can be visualized, for
example, by considering linear time-invariant systems that exhibit passivity-type
properties at, say low frequencies; and lose these passivity-type properties but have
small gain at high frequencies.
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1 Introduction

A desired property of a feedback interconnection of two nonlinear systems is
that the interconnection is input-output stable [23]. To determine stability,
one typically places assumptions on the two systems in the interconnection,
and then shows that, if the closed-loop system’s inputs belong to some class
of functions, then the errors and outputs also belong to the same class of
functions [7]. To illustrate, a negative feedback interconnection is shown in
Fig. 1, where M1 and M2 are causal operators acting on the errors e1 and e2,
respectively, to produce outputs y1 and y2, respectively.
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Fig. 1. Interconnection of M1 and M2.

The small gain and passivity theorems are two of the most important results
in the input-output stability theory of interconnected systems. The small gain
theorem states that if the product of the gains of two stable systems, intercon-
nected as shown in Fig. 1, is less than one, then the feedback interconnection
of the two systems is stable [7,16,8,24]. The passivity theorem guarantees sta-
bility of a feedback interconnection of two stable systems if, for instance, both
of the systems are passive, and one of them is input strictly passive with fi-
nite gain [7,16,8,21]. However, there exist many situations where stability of an
interconnection cannot be determined by use of the small gain or passivity the-
orems because the assumptions required on systems as stated in the theorems
do not match the properties of the systems in the feedback interconnection in
question.

In the papers [9,10], an input-output frequency domain stability result for the
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feedback interconnection of two stable, linear time-invariant (LTI) systems
was provided. The assumption placed on the LTI systems was that they both
exhibited a “mixed” small gain and passivity frequency domain property. That
is, the small gain and passivity properties were “blended” in a way as to create
a super-class of system assumptions (which captured, as subclasses, systems
described by small gain concepts and systems described by passivity concepts).
(Note also that systems not exhibiting the “mixed” small gain and passivity
frequency domain property were dealt with in [9], via the introduction of
weights to scale the interconnection such that the weighted systems then both
did exhibit the property.)

Obtaining results such as these has practical applicability. For instance, it has
been observed that high frequency dynamics can frequently destroy the pas-
sivity property of an otherwise passive system. A celebrated controversy in
adaptive control [20] depended on the observation that passivity conditions,
normally forming part of the hypotheses used in the proofs of convergence
of certain adaptive control algorithms, should not be assumed to be valid
in practice (because high frequency dynamics often neglected for modelling
purposes will always be present in a real system). Failure of the passivity con-
dition invalidated the applicability of the associated theorem on the algorithm
convergence to most real-life applications, and left a cloud hanging over the
real-life use of the algorithm. Simulations of [20] confirmed that adverse be-
havior could occur when high frequency dynamics were explicitly taken into
account.

The book [2] (see also [15] and [1]) described tools for establishing stability
of adaptive systems of the type examined in [20]; that is, where “passivity”
properties hold only for low frequency signals. Stability is established if ad-
ditionally (and in a rough manner of speaking), “gains” are small at high
frequencies (ie: a small gain property in the sense of the small gain theorem
holds in the frequency band where the passivity condition fails). Thus, an im-
portant class of applications in which passivity and small gain ideas have to
be “blended” exists.

In this paper, we aim to define a “mixed” small gain and passivity property,
in the time domain, for causal nonlinear systems, and prove the associated
input-output feedback interconnection stability result. It should be noted that
integral quadratic constraints (IQCs) may provide an intermediate generaliza-
tion between the LTI results reported in [9,10] and the nonlinear results that
we seek in this paper. The stability theorem associated with IQCs described
in [17, Theorem 1] captures the classical small gain and passivity/dissipativity
theorems under the proviso that one of the two cascaded systems in the loop is
linear and time-invariant. We divide the paper now into the following sections.
Section 2 provides an intuitive link between the results obtained in [9,10] and
the nonlinear results to be presented in this paper. In Section 3, the feed-
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back interconnection under consideration is formally described. In Section 4,
a “mixed” small gain and passivity property for a causal nonlinear system
is defined. The feedback interconnection stability result is then discussed in
Section 5. Conclusions are provided in Section 6.

2 Linear Time-Invariant Results

Let us recall the notion of the “mixed” small gain and passivity frequency
domain property as was described in [9,10]. Consider the negative feedback
interconnection of two single-input, single-output (SISO) LTI systems with
transfer functions m̂1(s) = 3

(s+1)(s+2)
and m̂2(s) = 13

(s+3)(s+4)
. The Nyquist

diagrams of these transfer functions are shown in Figs. 2 and 3, respectively.
Since the product of the gains of the two systems is greater than one, the
small gain theorem cannot be used as a tool to determine stability; and since
the systems are not passive, stability cannot be guaranteed via the passivity
theorem.
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Fig. 2. Nyquist diagram of m1(s).

−1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y 
A

xi
s

Real Axis

ω
a
 = 1 rad/s 

ω
b
 = 1.4 rad/s 

Fig. 3. Nyquist diagram of m1(s).

Notice that there exists a common frequency interval over which both systems
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are “passive” (and may or may not have “gain less than one”); and a com-
mon frequency interval over which both systems have “small gain” (and may
or may not be “passive”). Systems exhibiting such “mixed” properties were
mathematically described in [9,10] as follows: there exist constants 0 ≤ ε < 1,
k > 0 and l > 0 such that

−〈m̂f̂ , (kα + 1− α)m̂f̂〉+ 2〈m̂f̂ , αf̂〉 − 〈f̂ , (lα− ε(1− α))f̂〉 ≥ 0 (1)

∀f̂ ∈ H2
3 ; where m̂ ∈ RH∞ 4 and α(ω) is a real, continuous, even function of

frequency that is: i) equal to one on frequency intervals for which the system
described by m̂(s) is “input and output strictly passive”; ii) equal to zero
on frequency intervals for which the system described by m̂(s) has “gain less
than one”; and iii) is strictly greater than zero and strictly less than one
on frequency intervals for which the system described by m̂(s) is “input and
output strictly passive with gain less than one”. 5 This description indeed
captures the standard frequency domain concepts of passivity and small gain;
it also captures a concept of “blending” of the passivity and small gain notions.
In other words, the description indeed captures a class of systems that is larger
than the class of passive systems together with the class of systems with small
gain.

Shortly (in a subsequent section of this paper), a “mixed” small gain and
passivity time domain property for nonlinear systems will be defined (which
will lead us to the main business of the paper); immediately let us derive a time
domain analog of the LTI “mixed” small gain and passivity frequency domain
property. This will aid in motivating the definition of the “mixed” property
for nonlinear systems. We first establish some preliminary mathematics and
notation. The field of real numbers is denoted by R. Suppose that X and Y are
real inner product spaces. The inner product of X is denoted by 〈·, ·〉 : X×X →
R. A norm for each element of X is defined to be ‖f‖2

X = 〈f, f〉. An important
property of inner product spaces is the Cauchy-Schwarz inequality; that is
|〈f, g〉| ≤ ‖f‖X‖g‖X ∀f, g ∈ X . Suppose that H and K are Hilbert spaces. For
a bounded linear operator H : H → K, the Hilbert adjoint H∼ : K → H of H
is defined by 〈Hh, k〉 = 〈h,H∼k〉 for all h ∈ H and k ∈ K.

Let L2[0,∞) denote the Lebesgue space with inner product defined as

〈f, g〉 =
∫ ∞

0
g′(t)f(t)dt,

3 H2 is a subspace of L2(jR) (the space of square integrable functions on jR in-
cluding ∞) with functions analytic in Re(s) > 0, ie: in the open right-half plane.
4 RH∞ is the space of proper, real-rational transfer function matrices of stable,
continuous-time, LTI systems.
5 The notions of “input and output strict passivity” and “gain less than one” on a
finite frequency interval were defined in [9,10].
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where the superscript (·)′ denotes the vector transpose. The norm of functions
in L2[0,∞) is denoted by ‖ · ‖. For T ∈ [0,∞), let PT denote the truncation
operator. That is, for a function f(t), 0 ≤ t < ∞,

(PT f)(t) :=





f(t), t ≤ T

0, t > T
.

For convenience, the notation fT := PT f will be used. We define 〈f, g〉T :=
〈fT , gT 〉 and note that 〈fT , gT 〉 = 〈fT , g〉 = 〈f, gT 〉. Let L2e denote the exten-
sion of the space L2[0,∞), defined by L2e := {f : fT ∈ L2[0,∞) ∀T ∈ [0,∞)}.
Recall that the space L2[0,∞) satisfies the following properties:

i) The space L2[0,∞) is such that if f ∈ L2[0,∞), then fT ∈ L2[0,∞) ∀T ∈
[0,∞); and moreover, the space L2[0,∞) is such that f = limT→∞ fT .
Equivalently, the space L2[0,∞) is closed under the family of projections
{PT}.

ii) If f ∈ L2[0,∞) and T ∈ [0,∞), then ‖fT‖ ≤ ‖f‖. Moreover, ‖fT‖ is a
nondecreasing function of T ∈ [0,∞).

iii) If f ∈ L2e, then f ∈ L2[0,∞) if and only if limT→∞ ‖fT‖ < ∞.

The term system will be used to refer to a mapping from L2e into L2e,
which satisfies a causality condition. An operator M : L2e → L2e is causal
if PT MPT = PT M for all T ∈ [0,∞). An operator M : L2e → L2e is anti-
causal if (I−PT )M(I−PT ) = (I−PT )M for all T ∈ [0,∞). A system mapping
L2e into L2e is input-output L2-stable if the output belongs to L2[0,∞) when-
ever the input belongs to L2[0,∞). For simplicity, input-output L2-stability
will be referred to as input-output stability, or stability, when the context is
clear. It is assumed that all systems considered are relaxed systems (that is,
they have zero initial state). The operator I : X → X , defined by Ix := x for
all x ∈ X , denotes the identity operator. The operator 0 : X → Y , defined by
0x := 0 for all x ∈ X (where 0 denotes the zero vector from Y), denotes the
zero operator.

We now provide the following brief description of a (not necessarily finite-
dimensional) LTI system (in the context of the input-output theory of systems)
which may be found in texts such as [7,16,22,5] and in [4,3]. The discussion
is limited to SISO systems for simplicity. Let A denote the set of generalized
functions of the form

m(t) =





m0δ(t) + ma(t), t ≥ 0

0, t < 0

where m0 ∈ R, δ(·) denotes the unit impulse, and ma(·) is such that

∫ ∞

0
|ma(τ)|dτ < ∞.

6



Let Â denote the set consisting of all functions that are Laplace transforms
of elements of A. An LTI system M : L2[0,∞) → L2[0,∞) is defined to be a
convolution operator of the form

(Mf)(t) = m(t) ∗ f(t) =
∫ ∞

−∞
m(τ)f(t− τ)dτ

=
∫ ∞

−∞
m(t− τ)f(τ)dτ (2)

where m(·) ∈ A [7, Section D.1]. The function m(·) is called the kernel, or the
impulse response, of the operator M . Furthermore, since m(τ) = 0 for τ < 0
and f(t) = 0 for t < 0, from (2)

(Mf)(t) = m0f(t) +
∫ t

0
ma(τ)f(t− τ)dτ

= m0f(t) +
∫ t

0
ma(t− τ)f(τ)dτ.

Then m̂(jω) as in (1) is the Fourier transform of m(t); and let f̂(jω) denote
the Fourier transform of input signal f(t).

Suppose we introduce causal, bounded, linear operators Γ : L2[0,∞) →
L2[0,∞) and B : L2[0,∞) → L2[0,∞), where

Γ∼Γ + B∼B = I. (3)

Furthermore, suppose that Γ and B are time-invariant operators. Let γ(·) and
β(·) denote the kernels of Γ and B, respectively, such that γ(·), β(·) ∈ A. If
ha(t) := h(−t) denotes the kernel of an anticausal LTI system, then

γa(t) ∗ γ(t) + βa(t) ∗ β(t) = δ(t) (4)

from (3). (Recall that, if H is a linear causal operator, then its adjoint H∼ is
anticausal [6].) Let γ̂(jω) and β̂(jω) denote the Fourier transforms of γ(t) and
β(t), respectively. Then γ̂(−jω)γ̂(jω) + β̂(−jω)β̂(jω) = 1, since the kernel
of the adjoint of a linear (causal) system is obtained by replacing jω by −jω
when the kernel is expressed in terms of its Fourier transform. For convenience,
let (·)∗(jω) := (·)(−jω).

Now that we have defined γ̂(jω) and β̂(jω), we return to (1) and set α(ω) =
β̂∗(jω)β̂(jω). Rewriting (1) gives

−〈m̂f̂ , (kβ̂∗β̂ + γ̂∗γ̂)m̂f̂〉+ 2〈m̂f̂ , β̂∗β̂f̂〉 − 〈f̂ , (lβ̂∗β̂ − εγ̂∗γ̂)f̂〉 ≥ 0,

which is identical to

− 〈m̂f̂ , γ̂∗γ̂m̂f̂〉+ ε〈f̂ , γ̂∗γ̂f̂〉 − k〈m̂f̂ , β̂∗β̂m̂f̂〉+ 2〈m̂f̂ , β̂∗β̂f̂〉
− l〈f̂ , β̂∗β̂f̂〉 ≥ 0.
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Via the Paley-Wiener theorem [5, Theorem A.6.21], we can write

− 〈Mf, Γ∼ΓMf〉+ ε〈f, Γ∼Γf〉 − k〈Mf, B∼BMf〉+ 2〈Mf, B∼Bf〉
− l〈f, B∼Bf〉 ≥ 0,

which is identical to

− 〈ΓMf, ΓMf〉+ ε〈Γf, Γf〉 − k〈BMf, BMf〉+ 2〈BMf, Bf〉
− l〈Bf, Bf〉 ≥ 0. (5)

Inequality (5) provides us with a time domain version of the LTI “mixed”
small gain and passivity property: given the existence of causal, bounded, LTI
operators Γ : L2[0,∞) → L2[0,∞) and B : L2[0,∞) → L2[0,∞) such that
(3) is satisfied, a causal LTI system M : L2[0,∞) → L2[0,∞) has a “mixed”
small gain and passivity property associated with it if there exist constants
0 ≤ ε < 1, k > 0 and l > 0 such that (5) holds for all f ∈ L2[0,∞).

3 Feedback System Description

We want to derive an input-output stability result concerning the feedback
interconnection shown in Fig. 1. This feedback interconnection is described by
the equations

e1 = u1 − y2 y1 = M1e1

e2 = u2 + y1 y2 = M2e2

where u1, u2 ∈ L2e are the (external) input signals; e1, e2 ∈ L2e are the error
signals; and y1, y2 ∈ L2e are the output signals. The operators M1 and M2 are
assumed to causally map L2e into L2e. Furthermore, M1 and M2 each have
associated with them a “mixed” small gain and passivity property (defined
formally in the next section).

Strictness and non-strictness of the “mixed” small gain and passivity property
will be dealt with formally in later sections. Similarly to the passivity and small
gain theorems, one of the systems in the feedback interconnection is required to
have a strict form of the “mixed” small gain and passivity property associated
with it.

Well-posedness of the feedback interconnection corresponds to the existence
and uniqueness of solutions e1, e2 and y1, y2 for each choice of u1, u2; and
furthermore, requires that e1, e2 and y1, y2 depend causally on u1, u2 [14]. It is
usual to also require that e1, e2 and y1, y2 depend, on finite intervals, Lipschitz
continuously on u1, u2 [22]. References [23,11] describe conditions to impose
on the operators M1 and M2 to guarantee well-posedness of the feedback-loop.
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We do not discuss well-posedness further in this paper; well-posedness of the
feedback interconnection under consideration is assumed.

4 The “Mixed” Small Gain and Passivity Property

We seek to formally define what we refer to as the “mixed” small gain and
passivity property associated with a system. As mentioned previously, the
“mixed” small gain and passivity property can be thought of as a “blending”
of the concepts of passivity and small gain. The concepts of finite gain and
passivity are defined for nonlinear systems, in the time domain, below.

Definition 1 [16] A system M : L2e → L2e is said to have a finite gain if
there exist constants ε̄ ≥ 0 and η ≥ 0, such that

‖(Mf)T‖ ≤ ε̄‖fT‖+ η (6)

for all input signals f ∈ L2e and all T ∈ [0,∞).

The constant η is called the bias term and is included to allow for the case
where Mf 6= 0 when f = 0 [16]. Clearly, if there do exist constants ε̄ and η
such that (6) holds, then ε̄ is not uniquely defined. We call the gain of M the
number ε defined by

ε = inf{ε̄ ∈ R+ : ∃η such that inequality (6) holds}

(see [7, Section III.2]). If ε < 1, then the system M is said to have gain less
than one; if ε ≤ 1, then M is said to have gain less than or equal to one.
Systems with finite gain are said to be finite-gain stable [16]. Obviously, if a
system has finite gain, then the system is input-output stable.

Definition 2 [16] A system M : L2e → L2e is said to be input and output
strictly passive if there exist constants k, l > 0 such that

〈Mf, f〉T ≥ k‖(Mf)T‖2 + l‖fT‖2 (7)

for all input signals f ∈ L2e and all T ∈ [0,∞), given that the system has zero
initial state. The system M is said to be input strictly passive if it satisfies (7)
with k = 0; output strictly passive if it satisfies (7) with l = 0; and, passive if
it satisfies (7) with k = l = 0.

Note that input and output strict passivity is equivalent to input strict passiv-
ity with finite gain [21,19,13]. The (strict version of the) “mixed” small gain
and passivity property is now defined below.
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Definition 3 Let Γ : L2[0,∞) → L2[0,∞) and B : L2[0,∞) → L2[0,∞)
be any causal, bounded, linear (and not necessarily time-invariant) operators
such that

Γ∼Γ + B∼B = I. (8)

Then a system M : L2e → L2e is said to have a strict “mixed” small gain and
passivity property if there exist constants 0 ≤ ε < 1, k > 0, l > 0 and η ≥ 0
such that

− 〈Γ(Mf)T , Γ(Mf)T 〉+ ε〈ΓfT , ΓfT 〉 − k〈B(Mf)T ,B(Mf)T 〉
+ 2〈B(Mf)T ,BfT 〉 − l〈BfT ,BfT 〉+ η ≥ 0 (9)

for all input signals f ∈ L2e and all T ∈ [0,∞).

The term η has been included to allow for output bias (that is, when zero
system input does not imply zero system output) [18]. The “mixed” small
gain and passivity property indeed captures the concepts of passivity or small
gain normally associated with a system. If Γ = 0, then (9) describes an input
and output strictly passive system. If B = 0, then (9) describes a system with
gain less than one. The description of the “mixed” small gain and passivity
property additionally captures a concept of “blending” of the small gain and
passivity ideas. In the case of LTI M, Γ and B for example, if Γ is time-invariant
with |γ(jω)| close to 0 at low frequencies and close to 1 at high frequencies,
then the mixed property in qualitative terms corresponds to the system being
passive at low frequencies and having small gain at high frequencies. (Recall
that the papers [9,10] extensively illustrated the concept of “blending” of the
small gain and passivity ideas in the frequency domain.)

The following observation can be made in regards to LTI systems. Suppose
that the causal, bounded, linear operators Γ, B : L2[0,∞) → L2[0,∞) are
time-invariant. Consider a causal, LTI system M : L2[0,∞) → L2[0,∞). In
this case, if M satisfies condition (9), then M also satisfies condition (5). To
see this, first note that since M is linear (and has zero initial state), there is
no loss in generality in setting η = 0 in (9) [12], giving

− 〈Γ(Mf)T , Γ(Mf)T 〉+ ε〈ΓfT , ΓfT 〉 − k〈B(Mf)T , B(Mf)T 〉
+ 2〈B(Mf)T , BfT 〉 − l〈BfT , BfT 〉 ≥ 0. (10)

Now assuming that M satisfies (10), consider an arbitrary input f ∈ L2[0,∞)
and note that, if f ∈ L2[0,∞), then fT ∈ L2[0,∞) for all T ∈ [0,∞). Since
f ∈ L2[0,∞) and M, Γ, B : L2[0,∞) → L2[0,∞), we can take limits as T →∞
to obtain (5). Note that (10) is a stronger condition than (5). That is, since
(10) implies (5) (in the case of stable LTI systems), (10) is a more demanding
condition.

A consequence of a system having a strict “mixed” small gain and passivity
property as defined in Definition 3 is that the system is guaranteed to have
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finite gain.

Lemma 4 A system M : L2e → L2e with a strict “mixed” small gain and
passivity property (in the sense of Definition 3) has finite gain.

Proof. Inequality (9) can be rewritten as

〈(Mf)T , Γ∼Γ(Mf)T 〉+ k〈(Mf)T , B∼B(Mf)T 〉
≤ ε〈fT , Γ∼ΓfT 〉 − l〈fT , B∼BfT 〉+ 2〈(Mf)T , B∼BfT 〉+ η

≤ ε〈fT , Γ∼ΓfT 〉+ l〈fT , B∼BfT 〉+ 2〈(Mf)T , B∼BfT 〉+ η. (11)

Let φ = min{1, k}, so that the first term of the above inequality is greater
than or equal to

φ (〈(Mf)T , Γ∼Γ(Mf)T 〉+ 〈(Mf)T , B∼B(Mf)T 〉)
= φ〈(Mf)T , (Γ∼Γ + B∼B)(Mf)T 〉
= φ〈(Mf)T , (Mf)T 〉

using (8). That is, the first term of inequality (11) is greater than or equal to
φ‖(Mf)T‖2.

Let ψ = max{ε, l}, so that the last term of inequality (11) is less than or equal
to

ψ (〈fT , Γ∼ΓfT 〉+ 〈fT , B∼B)fT 〉) + 2〈(Mf)T , B∼BfT 〉+ η

= ψ〈fT , (Γ∼Γ + B∼B)fT 〉+ 2〈(Mf)T , B∼BfT 〉+ η

= ψ‖fT‖2 + 2〈(Mf)T , B∼BfT 〉+ η (using (8))

≤ ψ‖fT‖2 + 2‖(Mf)T‖‖B∼B‖‖fT‖+ η (using the Cauchy-Schwarz and

submultiplicative inequalities)

≤ ψ‖fT‖2 + 2‖(Mf)T‖‖fT‖+ η (since ‖B∼B‖ ≤ 1).

Since φ > 0 we can conclude that

‖(Mf)T‖2 ≤ 2φ̄‖fT‖‖(Mf)T‖+ φ̄
(
ψ‖fT‖2 + η

)

where φ̄ := 1
φ
; and so

‖(Mf)T‖ ≤ φ̄‖fT‖+
√

φ̄2‖fT‖2 + φ̄ (ψ‖fT‖2 + η)

≤ φ̄‖fT‖+
√

φ̄2‖fT‖2 + φ̄ψ‖fT‖2 +
√

φ̄η

=
(
φ̄ +

√
φ̄2 + φ̄ψ

)
‖fT‖+

√
φ̄η.

2
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5 Stability Result of Feedback Interconnection

An input-output stability result for the feedback interconnection shown in
Fig. 1 is now provided. The result states that, if systems M1 and M2 each
have associated with them a “mixed” small gain and passivity property, and
furthermore, if the “mixed” small gain and passivity property associated with
M2 is strict, then the feedback interconnection is stable. 6

Theorem 5 Consider a feedback interconnection as shown in Fig. 1 and de-
scribed by the equations

e1 = u1 −M2e2 (12)

e2 = u2 + M1e1 (13)

where M1 and M2 causally map L2e into L2e. Assume that for any u1 and
u2 in L2[0,∞), there are solutions e1 and e2 in L2e. Suppose that there exist
constants ε1, k1, l1, η1, ε2, k2, l2 and η2 such that

− 〈Γ(M1f)T , Γ(M1f)T 〉+ ε1〈ΓfT , ΓfT 〉 − k1〈B(M1f)T ,B(M1f)T 〉
+ 2〈B(M1f)T ,BfT 〉 − l1〈BfT ,BfT 〉+ η1 ≥ 0 (14)

− 〈Γ(M2f)T , Γ(M2f)T 〉+ ε2〈ΓfT , ΓfT 〉 − k2〈B(M2f)T ,B(M2f)T 〉
+ 2〈B(M2f)T ,BfT 〉 − l2〈BfT ,BfT 〉+ η2 ≥ 0 (15)

∀f ∈ L2e, ∀T ∈ [0,∞), where Γ and B are as defined in Definition 3. Under
these conditions, if

0 ≤ ε1 ≤ 1 l1 + k2 ≥ 0

0 ≤ ε2 < 1 l2 + k1 > 0

k2 > 0, l2 > 0

then u1, u2 ∈ L2[0,∞) imply that e1, e2,M1e1,M2e2 ∈ L2[0,∞).

To avoid confusion, note that Γ as it appears in (14) and (15) is the same
operator. Similarly, B as it appears in (14) and (15) is the same operator. 7

Thus M1 and M2 satisfy the same “mixed” small gain and passivity condition

6 In fact (corresponding to the choice of constants k1 and l1 below), the result
permits M1 to not have a “mixed” small gain and passivity property associated
with it, provided that this “lack” of the property is compensated by the “strength”
of the “mixed” small gain and passivity property associated with M2. The constants
defined in Theorem 5 and the conditions associated with them quantify these ideas
of “lack”, “strength” and compensation.
7 In the LTI case, this relates to the requirement that a common frequency interval
can be found on which both systems in the feedback interconnection are “input and
output strictly passive and have gain less than one” (see [9,10] for details).
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as far as frequency dependency is concerned; the constants εi, ki, li and ηi may
differ for i = 1, 2. Also note that with appropriate choices of Γ and B, Theorem
5 reduces to the passivity theorem (Γ = 0) and the small gain theorem (B= 0),
respectively.

The input and output signal space for the feedback interconnection shown in
Fig. 1 is the product space L2e×L2e, and the elements of the input and output
signal space are u := ( u1

u2 ) and y := ( y1
y2 ), respectively. Inner products in these

spaces are derived by summing inner products in the component spaces. We
proceed with a proof for Theorem 5 by summing the inner products of (14)
and (15) to derive an inner product inequality describing the feedback inter-
connection. (This is as opposed to having two separate inequalities, namely
(14) and (15), describing the feedback interconnection’s component systems,
namely M1 and M2, respectively.) Then appropriate manipulations of the in-
ner product inequality give the desired stability result.

Proof. Truncating (12) and (13) gives

e1T = u1T − (M2e2)T (16)

e2T = u2T + (M1e1)T . (17)

For any u1, u2 ∈ L2[0,∞), for any T ∈ [0,∞),

− 〈Γ(M1e1)T , Γ(M1e1)T 〉+ ε1〈Γe1T , Γe1T 〉 − k1〈B(M1e1)T , B(M1e1)T 〉
+ 2〈B(M1e1)T , Be1T 〉 − l1〈Be1T , Be1T 〉+ η1 − 〈Γ(M2e2)T , Γ(M2e2)T 〉
+ ε2〈Γe2T , Γe2T 〉 − k2〈B(M2e2)T , B(M2e2)T 〉+ 2〈B(M2e2)T , Be2T 〉
− l2〈Be2T , Be2T 〉+ η2

=− 〈Γe2T − Γu2T , Γe2T − Γu2T 〉+ ε1〈Γe1T , Γe1T 〉 − l1〈Be1T , Be1T 〉
+ 2〈Be2T − Bu2T , Be1T 〉 − k1〈Be2T − Bu2T , Be2T − Bu2T 〉+ η1

− 〈Γu1T − Γe1T , Γu1T − Γe1T 〉+ ε2〈Γe2T , Γe2T 〉 − l2〈Be2T , Be2T 〉
+ 2〈Bu1T − Be1T , Be2T 〉 − k2〈Bu1T − Be1T , Bu1T − Be1T 〉+ η2

=− 〈e1T , [(1− ε1)Γ
∼Γ + (l1 + k2)B

∼B] e1T 〉 − 〈u1T , (Γ∼Γ + k2B
∼B)u1T 〉

− 〈e2T , [(1− ε2)Γ
∼Γ + (l2 + k1)B

∼B] e2T 〉 − 〈u2T , (Γ∼Γ + k1B
∼B)u2T 〉

+ 2〈e1T , (Γ∼Γ + k2B
∼B)u1T 〉+ 2〈e2T , (Γ∼Γ + k1B

∼B)u2T 〉
− 2〈e1T , B∼Bu2T 〉+ 2〈e2T , B∼Bu1T 〉+ η1 + η2

using (16) and (17) to substitute in for (M2e2)T and (M1e1)T , respectively, and
then rearranging. Using (14) and (15), the first and thus the last member of
this equality is greater than or equal to zero. In this inequality, set η̄ := η1 +η2

for convenience. In other words, for any u1, u2 ∈ L2[0,∞) and any T ∈ [0,∞),
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we know that there exist constants ε1, k1, l1, ε2, k2, l2 and η̄ such that

〈e1T , [(1− ε1)Γ
∼Γ + (l1 + k2)B

∼B] e1T 〉+ 〈e2T , [(1− ε2)Γ
∼Γ + (l2 + k1)

B∼B] e2T 〉 ≤ 2〈e1T , (Γ∼Γ + k2B
∼B)u1T 〉+ 2〈e2T , (Γ∼Γ + k1B

∼B)u2T 〉
− 2〈e1T , B∼Bu2T 〉+ 2〈e2T , B∼Bu1T 〉 − 〈u1T , (Γ∼Γ + k2B

∼B)u1T 〉−
〈u2T , (Γ∼Γ + k1B

∼B)u2T 〉+ η̄ (18)

∀e1, e2 ∈ L2e, ∀T ∈ [0,∞).

The left-hand side of inequality (18) is equal to

(1− ε1)〈e1T , Γ∼Γe1T 〉+ (l1 + k2)〈e1T , B∼Be1T 〉+ (1− ε2)〈e2T , Γ∼Γe2T 〉
+ (l2 + k1)〈e2T , B∼Be2T 〉,

which is greater than or equal to

(1− ε2)〈e2T , Γ∼Γe2T 〉+ (l2 + k1)〈e2T , B∼Be2T 〉 (19)

since 1− ε1, l1 + k2 ≥ 0. Let σ = min{1− ε2, l2 + k1} (noting that σ > 0) such
that the term denoted by (19) is greater than or equal to

σ (〈e2T , Γ∼Γe2T 〉+ 〈e2T , B∼Be2T 〉) = σ〈e2T , (Γ∼Γ + B∼B)e2T 〉
= σ‖e2T‖2

using (8).

The right-hand side of inequality (18) is equal to

2〈e1T , Γ∼Γu1T 〉+ 2k2〈e1T , B∼Bu1T 〉+ 2〈e2T , Γ∼Γu2T 〉+ 2k1〈e2T , B∼Bu2T 〉
− 2〈e1T , B∼Bu2T 〉+ 2〈e2T , B∼Bu1T 〉 − 〈u1T , Γ∼Γu1T 〉 − k2〈u1T , B∼Bu1T 〉
− 〈u2T , Γ∼Γu2T 〉 − k1〈u2T , B∼Bu2T 〉+ η̄

which is less than or equal to

2|〈e1T , Γ∼Γu1T 〉|+ 2k2|〈e1T , B∼Bu1T 〉|+ 2|〈e2T , Γ∼Γu2T 〉|+ 2|k1||〈e2T ,

B∼Bu2T 〉|+ 2|〈e1T , B∼Bu2T 〉|+ 2|〈e2T , B∼Bu1T 〉|+ 〈u1T , Γ∼Γu1T 〉+
k2〈u1T , B∼Bu1T 〉+ 〈u2T , Γ∼Γu2T 〉+ |k1|〈u2T , B∼Bu2T 〉+ η̄. (20)

Let ρ = max{1, k2, |k1|} such that the term denoted by (20) is less than or
equal to

2ρ(|〈e1T , Γ∼Γu1T 〉|+ |〈e1T , B∼Bu1T 〉|+ |〈e2T , Γ∼Γu2T 〉|+ |〈e2T , B∼Bu2T 〉|) +

2(|〈e1T , B∼Bu2T 〉|+ |〈e2T , B∼Bu1T 〉|) + ρ(〈u1T , Γ∼Γu1T 〉+ 〈u1T , B∼Bu1T 〉+
〈u2T , Γ∼Γu2T 〉+ 〈u2T , B∼Bu2T 〉) + η̄. (21)
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Note that

ρ(〈u1T , Γ∼Γu1T 〉+ 〈u1T , B∼Bu1T 〉+ 〈u2T , Γ∼Γu2T 〉+ 〈u2T , B∼Bu2T 〉)
= ρ(〈u1T , (Γ∼Γ + B∼B)u1T 〉+ 〈u2T , (Γ∼Γ + B∼B)u2T 〉)
= ρ(‖u1T‖2 + ‖u2T‖2)

using (8). So the term denoted by (21) is equal to

2ρ(|〈e1T , Γ∼Γu1T 〉|+ |〈e1T , B∼Bu1T 〉|+ |〈e2T , Γ∼Γu2T 〉|+ |〈e2T , B∼Bu2T 〉|) +

2(|〈e1T , B∼Bu2T 〉|+ |〈e2T , B∼Bu1T 〉|) + ρ(‖u1T‖2 + ‖u2T‖2) + η̄

which is less than or equal to

2ρ(‖Γ∼Γ‖+ ‖B∼B‖)(‖e1T‖‖u1T‖+ ‖e2T‖‖u2T‖) +

2‖B∼B‖(‖e1T‖‖u2T‖+ ‖e2T‖‖u1T‖) + ρ(‖u1T‖2 + ‖u2T‖2) + η̄ (22)

by using the Cauchy-Schwarz and submultiplicative inequalities. Eliminating
e1T using (16), using the triangle inequality, and then applying Lemma 4 to
M2 shows that the term denoted by (22) is less than or equal to

2ρ(‖Γ∼Γ‖+ ‖B∼B‖)((‖u1T‖+ κ‖e2T‖+ ξ)‖u1T‖+ ‖e2T‖‖u2T‖) + η̄ +

2‖B∼B‖((‖u1T‖+ κ‖e2T‖+ ξ)‖u2T‖+ ‖e2T‖‖u1T‖) + ρ(‖u1T‖2 + ‖u2T‖2)

where the non-negative constants κ and ξ exist due to the boundedness of M2.
Since σ > 0, we can conclude that

‖e2T‖2 ≤ 2b̄(T )‖e2T‖+ c̄(T ), (23)

where b̄(T ) and c̄(T ) tend to finite values b̄ and c̄, respectively, as T → ∞,
since u1, u2 ∈ L2[0,∞). From (23)

‖e2T‖ ≤ b̄(T ) + (b̄(T )2 + c̄(T ))
1
2

∀T ∈ [0,∞), and remains bounded as T →∞. So e2 ∈ L2[0,∞). From Lemma
4 the same holds for M2e2, ie: M2e2 ∈ L2[0,∞). By (12) and (13) it follows
that e1,M1e1 ∈ L2[0,∞). 2

6 Conclusions

An input-output stability result was obtained for a standard feedback inter-
connection of two causal, nonlinear systems, where each system has a “mixed”
small gain and passivity assumption associated with it. We indicated that the
“mixed” small gain and passivity property reduces to a description of a system
that is input and output strictly passive; or alternatively, to a description of a
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system that has gain less than one, when certain operators are appropriately
defined. The “mixed” small gain and passivity property also captures a notion
of “blending” of the small gain and passivity ideas, and thus describes a class
of systems that is larger than the class of passive systems together with the
class of systems with small gain. In future work, we intend that relationships
to Lyapunov stability and dissipativity concepts be explored. It will also be
necessary to investigate techniques for determining whether or not a nonlinear
system has a “mixed” small gain and passivity property associated with it.
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