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SUMMARY

A stability robustness test is developed for internally stable, nominal, linear time-invariant (LTI)
feedback systems subject to structured, linear time-varying uncertainty. There exists (in the literature)
a necessary and sufficient structured small gain condition that determines robust stability in such
cases. In this paper, the structured small gain theorem is utilized to formulate a (sufficient) stability
robustness condition in a scaled LTI ν-gap metric framework. The scaled LTI ν-gap metric stability
condition is shown to be computable via linear matrix inequality techniques, similarly to the structured
small gain condition. Apart from a comparison with a generalized robust stability margin as the final
part of the stability test, however, the solution algorithm implemented to test the scaled LTI ν-gap
metric stability robustness condition is shown to be independent of knowledge about the controller
transfer function (as opposed to the LMI feasibility problem associated with the scaled small gain
condition which is dependent on knowledge about the controller). Thus, given a nominal plant and
a structured uncertainty set, the stability robustness condition presented in this paper provides a
single constraint on a controller (in terms of a large enough generalized robust stability margin) that
(sufficiently) guarantees to stabilize all plants in the uncertainty set.

key words: ν-gap metric; stability robustness; structured uncertainty; linear time-varying

uncertainty

1. INTRODUCTION

When a stabilizing controller is designed for a nominal plant, a desired objective is that
the controller also succeeds in stabilizing the “true-life” system in the face of uncertainty.
Uncertainty may be modeled as an unstructured perturbation to the nominal plant; classes of
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these uncertainties include additive uncertainty, input- or output-multiplicative uncertainty,
and input- or output-feedback uncertainty. A structured uncertainty model may be used when
plants are subjected to multiple uncertainties, for example when the plant contains multiple
unstructured uncertainties, or when the plant contains a number of uncertain parameters.

The problem discussed in this paper involves determining internal stability of a system
subject to structured, linear time-varying (LTV) uncertainties, given that a nominal feedback
interconnection, consisting of a linear time-invariant (LTI) system P0 and a LTI controller K

as shown in Fig. 1, is internally stable. Often it is suitable to describe such a problem using a
linear fractional transformation (LFT) framework, as shown in Fig. 2, where F (s) is a transfer
function matrix that describes the relationship between the nominal LTI plant P0 and the
structured LTV uncertainty denoted by ∆.
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Figure 1. Nominal closed-loop system.
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Figure 2. Robust stability problem.

This type of stability problem has been studied intensively in the literature. For instance,
[1] reduced the problem (where ∆ was possibly nonlinear) to a question of existence of a
quadratic Lyapunov function of a certain structure. The existence of the Lyapunov function
was determined by solving a convex optimization problem. In [2], where complex-valued
uncertainty is considered, quadratic stability (which is related to the existence of quadratic
Lyapunov functions) is shown to be equivalent to a scaled H∞ norm condition when the
structured uncertainty consists of only two diagonal blocks. (The equivalence for more than
two blocks is not in general true [2].) A frequency domain stability criterion based on integral
quadratic constraints (IQCs) was derived in [3], where an uncertainty structure consisting of
bounded, real-valued, differentiable, time-varying parameters (with bounded derivatives) down
the diagonal was considered. The paper [4] considered structured slowly time-varying uncertain
gains and obtained a sufficient frequency domain condition for stability when pairs of the
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uncertain gain and its derivative belonged to a given convex set. A sufficient stability condition
(that can be formulated in terms of linear matrix inequalities (LMIs)) was derived in [5], and
was shown to be less conservative than a standard scaled small gain stability condition when the
uncertainty structure contains real, repeated, time-varying parameters (ie: when sub-blocks of
the uncertainty structure share the same scalars). Obtaining this condition did not require the
use of IQCs [3], or the explicit construction of a quadratic Lyapunov function [2]; but followed
from basic properties of the structured singular value [6–8] (although the results are closely
related to notions of quadratic stability - [2] used the quadratic stability approach to derive
the condition for the case where all of the parameters are complex). In [9], a computational
approach was developed for designing a globally optimal controller that is robust to time-
varying nonlinear perturbations in the plant. The controller design problem is formulated
as an optimization with bilinear matrix inequality constraints, and solved to optimality by
a branch-and-bound algorithm (see [10] for instance). A branch-and-bound scheme was also
used in [11] to obtain a globally optimal solution to a robust synthesis problem.

The scaled small gain condition has remained a well utilized tool in determining stability
robustness [12–14]. Provided, as described above, that the nominal plant and controller are
LTI, and the uncertainties are of a certain structured form, then this scaled small gain condition
is necessary and sufficient [12, 13].

In this paper, we utilize the scaled small gain condition to develop a stability robustness
test for problems of the sort shown in Fig. 2 (where ∆ is structured LTV uncertainty, and
F and K are LTI). Particularly, we derive a (sufficient) stability robustness condition in a
scaled LTI ν-gap metric framework and show that this condition can be checked via solving
a LMI feasibility problem. The scaled small gain condition can be checked by solving a LMI
feasibility problem too. The advantage of using the condition proposed in this paper, however,
is that the LMI feasibility problem associated with the condition is independent of knowledge
about the controller. Solution of the LMI feasibility problem (independent of K) provides
a numerical quantity (which we shall loosely call the “scaled LTI ν-gap quantity”); and the
scaled LTI ν-gap quantity is then compared to a generalized robust stability margin, bP0,K

(which is dependent on K and on the nominal plant) [15–17]. Such a constraint could be
very easily incorporated into a control design procedure. Unsurprisingly, the scaled LTI ν-gap
metric condition may provide a more conservative test for stability robustness than the scaled
small gain condition (since the less knowledge one utilizes regarding the controller, the more
careful one has to be). However, given a collection of difficult (uncertain) plants, the scaled
LTI ν-gap quantity (as opposed to the scaled small gain condition) gives immediate indication
to the control system designer of what bP0,K must be in order to (sufficiently) ensure stability
robustness.

The LTI ν-gap metric was introduced in [18]. Like its predecessor the gap metric [19–23], the
ν-gap metric offers a measure of difference or “distance” between two time-invariant systems
from a feedback perspective, and thus provides a means of quantifying feedback system stability
robustness. Any plant at a ν-gap distance less than, say β, from the nominal plant will be
stabilized by any controller which stabilizes the nominal with a stability margin of at least β.
Unlike the gap metric, it can also be said of the ν-gap metric that any plant at a distance
greater than β from the nominal will be destabilized by some controller which stabilizes the
nominal with a stability margin of at least β [18]. In this sense, the LTI ν-gap metric is less
conservative than the gap metric. The LTI ν-gap metric is also simpler to compute.

Time-varying and nonlinear extensions to both the gap metric [24–28] and the ν-gap metric
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[29–31] exist. Analytical computations of the metrics in these cases are generally not possible.
For example, if we consider the calculation of the time-varying ν-gap metric defined by [31,

Definition III.4] between a SISO (single-input, single-output) LTI plant P0 =
(

−1 1
1 0

)
and

the LTV output-multiplicatively perturbed plant P1 =
(

−1 1
1 + ǫ sin (at + b) 0

)
where ǫ ∈ [0, 1],

we see that, using [31, Definition III.4], one is required to solve differential Riccati equations to
obtain time-varying normalized graph symbols. This is not analytically possible, even for the
basic example mentioned. Despite the fact that we are concerned with LTV perturbations,
however, we can still use effective ν-gap metric methods by showing the applicability of
calculations for time-invariant problems to the time-varying case.

A description of the scaled small gain condition is provided in Section 2. A stability
robustness condition in a scaled LTI ν-gap metric framework is derived in Section 3. The
theoretical construction of the LMI feasibility problem as required for evaluation of the scaled
LTI ν-gap quantity is given in Section 4; and a complete solution algorithm to test the scaled
LTI ν-gap metric condition is provided in Section 5. An example of the implementation of the
solution algorithm is provided in Section 6. Section 7 concludes the paper.

Preliminaries The following is an account of the mathematical notation used throughout
this paper. The space L2(−∞,∞) is a space consisting of Lebesgue measurable functions with
finite norm. L2[0,∞) is the subspace of L2(−∞,∞) with functions zero for t < 0. R denotes
the set of proper real rational transfer function matrices. L∞(jR) is a Banach space of matrix-
(or scalar-) valued functions that are essentially bounded on jR. The Hardy space H∞ is the
closed subspace of L∞ with functions that are analytic and bounded in the open right-half
plane (RHP), with norm denoted ‖ · ‖∞. In other words, H∞ is the space of transfer functions
of stable, LTI, continuous-time systems. RH∞ denotes the subspace of H∞ where transfer
function matrices are proper and real rational. The L2-induced norm for LTV operators will
be denoted by ‖ · ‖. For LTI systems, the L2-induced norm is precisely equal to ‖ · ‖∞.

For a general matrix X = [xij ] ∈ Cr×s, X∗ denotes the complex conjugate transpose [x̄ji].
For a transfer function matrix X(s) ∈ Rr×s, X∼(s) is defined to mean X(−s)T ; while X(jω)∗

denotes the complex conjugate transpose of the frequency response function X(jω) at each
frequency, ie: X(jω)∗ = X(−jω)T . Let X ∈ C(r1+r2)×(s1+s2) be partitioned as follows:

(
X11 X12

X21 X22

)
,

and let Yl ∈ Cs2×r2 and Yu ∈ Cs1×r1 . The notation

Fl(X, Yl) := X11 + X12Yl(I − X22Yl)
−1X21

and
Fu(X, Yu) := X22 + X21Yu(I − X11Yu)−1X12

refers to the standard lower and upper linear fractional representations, respectively, as shown
in Fig. 3. X1⋆X2 denotes the interconnection of two LFTs known as the Redheffer star-product,
as shown in Fig. 4 [32, Section 10.4]. The notation

(
A B

C D

)

refers to a system realization (A, B, C, D). Well-posedness of closed-loops is assumed
throughout the paper.
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Figure 3. Lower and upper LFTs.
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Figure 4. Redheffer star product.

2. THE SCALED SMALL GAIN CONDITION

A description of the scaled small gain condition of interest in this paper is provided as follows
(see also [13]). Consider the uncertain system shown in Fig. 2. Suppose that the generalized
system F is partitioned as

F =

(
F11 F12

F21 F22

)
, (1)

where F11 ∈ Rp×q , F12 ∈ Rp×m, F21 ∈ Rn×q and F22 ∈ Rn×m. Furthermore, let a stabilizable
and detectable realization for F ∈ R(p+n)×(q+m) be given by




A B1 B2

C1 D11 D12

C2 D21 0


 . (2)

Let the nominal plant be denoted by P0 := Fu(F, 0) = F22; and the controller be denoted
by K ∈ Rm×n. Let the interconnection of P0 and K, as shown in Fig. 1, be denoted by
[P0, K]. This interconnection is said to be internally stable if it is well-posed and each of the
four transfer functions mapping the signals v1 and v2 to y and u are stable; that is, they
belong to RH∞ [32]. Recall it is our intention to assume that this interconnection is indeed
internally stable. Suppose that P0 has an inherited realization (A, B2, C2) that is stabilizable
and detectable. Then [P0, K] is internally stable if and only if the system shown in Fig. 5 is
internally stable (this taken to mean that the system is well-posed and that each of the nine
transfer functions mapping w, v1 and v2 to z, y and u are stable) [32, Lemma 12.2]. Denote
Z := Fl(F, K). The system in Fig. 2 may be reduced to the system shown in Fig. 6.

Let us define a block-diagonal uncertainty set

∆ := {∆ = diag(∆1 . . . ∆k) : ∆i is a qi × pi causal LTV operator and ‖∆‖ ≤ 1},
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Figure 5. Internal stability of Fl(F, K).
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Figure 6. Reduced stability robustness problem.

where q := q1 + . . .+ qk and p := p1 + . . .+pk. Here we make the observation that, since ∆ is a
subset of the unit ball of causal LTV operators, then clearly the standard small gain condition

‖Z‖∞ < 1

for unstructured uncertainty is a sufficient test for input-output stability of the system shown in
Fig. 6 [13]. Now associate with ∆ a set of scalings that commute with the set of perturbations.
In particular, we will choose a set of constant diagonal matrix pairs which share the same
scalar coefficients, denoted

D := {(Dl, Dr) : Dl = diag(d1Iq1
, . . . , dkIqk

), Dr = diag(d1Ip1
, . . . , dkIpk

), di ∈ R, di > 0}

such that

∆ = Dl∆D−1
r

∀∆ ∈ ∆. Stability of the system in Fig. 7 is equivalent to stability of the system in Fig. 6
(since it is the same system). This means that if we can find an element D̃ = (Dl, Dr) of D

satisfying

‖DrZD−1
l ‖∞ < 1

then we can guarantee that the system in Fig. 6 is input-output stable. Since the identity
matrices (of suitable dimensions) are members of D, there always exists a D̃ = (Dl, Dr) ∈ D

such that ‖DrZD−1
l ‖∞ ≤ ‖Z‖∞. Thus, the scaled small gain condition provides a less

conservative test for stability then the standard small gain condition [13]. In fact, it is
furthermore possible to obtain the following result [13].

Theorem 1. [13, Theorem 9.6] Consider a causal, LTI system with transfer function matrix
Z ∈ RH∞. The following are equivalent:
(i) The system in Fig. 6 is stable for all ∆ ∈ ∆.
(ii) The inequality inf

D̃=(Dl,Dr)∈D

‖DrZD−1
l ‖∞ < 1 holds.
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A proof of Theorem 1 is provided in [13]. A discrete-time version of Theorem 1 can be
found in [12, 14]. Note that there exist other cases in which the scaled small gain condition
is necessary and sufficient condition for stability. Another case that will be utilized in this
paper is where the uncertainties are LTI and structured such that they consist of two diagonal
blocks. Reference [32, Chapter 11] provides thorough discussion of this case.

Z

D

Dl Dr
-1

DrDl
-1

Figure 7. Scaled robust stability problem.

3. THE SCALED LTI ν-GAP METRIC CONDITION

Utilizing Theorem 1, we derive a stability robustness result for the system shown in Fig. 2
in a scaled, LTI, ν-gap metric framework. The following is claimed: given that a controller
K stabilizes a nominal plant P0 with generalized robust stability margin bP0,K , if a certain
LTI quantity (which is independent of K) is smaller than bP0,K , then the same controller will
stabilize the system when subjected to structured LTV uncertainty. If the LTI quantity is
equal to or larger than bP0,K , then the controller may or may not stabilize the system when
subject to uncertainty.

Let δ := {δ : δ ∈ RHq×p
∞ , ‖δ‖∞ ≤ 1} and δo := {δ : δ ∈ RHq×p

∞ , ‖δ‖∞ < 1} denote full-
block sets of LTI uncertainties. The generalized robust stability margin, bP0,K ; the optimal
generalized robust stability margin, bopt(P0) := supK bP0,K ; and the LTI ν-gap metric, denoted
δν(P0, P1) where P0 ∈ Rn×m and P1 ∈ Rn×m, are defined as in [17].

Theorem 2. Let a generalized plant F ∈ R(p+n)×(q+m) be partitioned as in (1) and have
a stabilizable and detectable realization as given by (2). Let P0 := Fu(F, 0) be the nominal
plant with an inherited realization (A, B2, C2) which is stabilizable and detectable†; and let
K ∈ Rm×n be a stabilizing controller for P0, with a given stabilizable and detectable realization.
Consider the uncertainty sets ∆, δ and δo and the set of constant diagonal matrix pairs D as
defined above. Suppose that each ∆ ∈ ∆ and each δ ∈ δ has a given stabilizable and detectable
realization; and that each induced realization‡ for Fu(F, ∆) and Fu(F, D−1

l δDr) is stabilizable
and detectable (as defined in Theorem 9 of the Appendix). If

inf
D̃=(Dl,Dr)∈D

sup
δ∈δo

δν(P0, Fu(F, D−1
l δDr)) < bP0,K , (3)

then [PLTV , K] is internally stable for all ∆ ∈ ∆, where PLTV := Fu(F, ∆).

†Such an assumption is a standard assumption in H∞ control and is necessary and sufficient for F to be
internally stabilizable via a controller connecting y to u [33].
‡Induced realizations for upper LFTs are formally defined in the Appendix (see Definition 8).
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Proof. We have

inf
D̃=(Dl,Dr)∈D

sup
δ∈δo

δν(P0, Fu(F, D−1
l δDr)) < bP0,K

⇔ ∃D̃ ∈ D : ∀δ ∈ δ δν(P0, Fu(F, D−1
l δDr)) < bP0,K (4)

⇒ ∃D̃ ∈ D : ∀δ ∈ δ the system in Fig. 8 is internally stable (using the stability

result associated with the LTI ν-gap metric that is provided in [17, 18]) (5)

⇔ ∃D̃ ∈ D : ‖DrFl(F, K)D−1
l ‖∞ < 1 (using the small gain theorem in

[32, Theorem 9.1], since Fl(F, K) ∈ RH∞ as shown in Appendix Section I)

⇔ inf
D̃=(Dl,Dr)∈D

‖DrFl(F, K)D−1
l ‖∞ < 1

⇔ ∀∆ ∈ ∆ the system in Fig. 2 is internally stable (from Theorem 1).

2

The only implication in the above proof that is not necessary and sufficient is the one that
relates (4) to (5), which is based on [17, Remark 3.11]. Therefore, the scaled LTI ν-gap metric
stability condition (3), even though only a sufficient condition, is still the strongest result one
could derive in the following sense. The LTI ν-gap metric is strongly necessary in the sense
that there always exists a controller K satisfying δν(·, ·) ≮ bP,K for which internal stability is
lost (see [18, Theorem 4.5] or [17, Remark 3.11] for further details), and hence there always
exists a K that does not satisfy inequality (3) for which robust internal stability of the system
shown in Fig. 8 is lost.

F

K

d

u y

w z

Dl
-1 Dr

Figure 8. Internal stability of LTI system.

An observation in regards to the scaled small gain condition when compared to the scaled
LTI ν-gap metric condition is as follows. The scaled small gain condition: does there exist a
D̃ = (Dl, Dr) ∈ D such that

‖DrFl(F, K)D−1
l ‖∞ < 1,

can be tested directly using LMI techniques. Part (ii) of the following Lemma shows that the
condition is equivalent to a convex condition over the positive scaling set D; and by part (iii)
of the Lemma, checking the condition reduces to solving a LMI feasibility problem [13].



A STABILITY ROBUSTNESS TEST UTILIZING THE ν-GAP METRIC 9

Lemma 3. [13, Proposition 8.6] Suppose Z ∈ RH∞ with transfer function matrix Z(s) =
C(sI − A)−1B + D, and A is Hurwitz of order n. Then the following are equivalent:

(i) ∃D̃ ∈ D : ‖DrZD−1
l ‖∞ < 1;

(ii) ∃D̃ ∈ D : Z∗DrZ − Dl < 0;

(iii) ∃D̃ ∈ D and a symmetric n × n matrix X > 0 such that

(
C∗

D∗

)
Dr

(
C D

)
+

(
A∗X + XA XB

B∗X −Dl

)
< 0.

Refer to [13] for the proof. Note that testing the scaled small gain condition in this way is
dependent on information about the controller. That is, for each different K, one must solve a
different LMI feasibility problem (for instance) to determine stability. The LHS of (3), however,
is independent of K. In the remainder of this paper, it will be shown that this “scaled LTI
ν-gap” quantity on the LHS of (3) can also be computed by solving a LMI feasibility problem
(in association with a bisectional search). Since the quantity on the LHS of (3) is independent
of K, this means that the (entire solution algorithm involving the) associated LMI feasibility
problem has only to be solved once (given F ); the quantity is then compared to bP0,K which is
computed as required. The scaled LTI ν-gap metric condition may provide a more conservative
test for stability robustness than the scaled small gain condition (since the less knowledge one
utilizes regarding the controller, the more careful one has to be). However, given a collection
of difficult (uncertain) plants, the scaled LTI ν-gap metric condition (as opposed to the scaled
small gain condition) provides a single constraint on a controller (in terms of a large enough
generalized robust stability margin) that (sufficiently) guarantees to stabilize all plants in the
uncertainty set. A constraint such as this could very easily be incorporated into a control
design procedure.

4. A LMI FEASIBILITY PROBLEM

It was stated above that the LTI quantity on the LHS of (3) can be computed via solving a
LMI feasibility problem. This result is presented later in this section (see Theorem 7). First,
some preliminary results are required.

The first result is a minor but important extension of [34, Proposition 1.1], and relates a
LTI ν-gap metric and a transfer function matrix stability and small gain concept. First, a
LTI system R̃ (dependent on some strictly proper§ LTI system P1 ∈ Rn×m and some number
β ∈ (0, bopt(P1)) ) is introduced as follows. Suppose that P1 has a stabilizable and detectable
realization (AP1

, BP1
, CP1

). Let X = X∗ ≥ 0 be the stabilizing solution to the generalized
control algebraic Riccati equation (GCARE)

A∗
P1

X + XAP1
− XBP1

B∗
P1

X + C∗
P1

CP1
= 0

§P1 is assumed to be strictly proper for simplicity in [35]. It is quite satisfactory for us to consider a strictly
proper P1 also because this material is to be applied to subsequent results where a generalized system F with
a realization given as in (2), and a nominal system P0 with an inherited realization (A, B2, C2), are considered.
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and Z = Z∗ ≥ 0 be the stabilizing solution to the generalized filtering algebraic Riccati
equation (GFARE)

AP1
Z + ZA∗

P1
− ZC∗

P1
CP1

Z + BP1
B∗

P1
= 0.

Let γ := 1
β
. Define, as per [35], a transfer function matrix R̃ ∈ R(n+m)×(m+n) via the realization




AR̃ BR̃1
BR̃2

CR̃1
0 I

CR̃2

√
γ2 − 1I 0


 , (6)

where Y := 1
γ2−1Z, Ȳ := Y (I − XY )−1 and

AR̃ := AP1
− BP1

B∗
P1

X − γ2Ȳ C∗
P1

CP1

BR̃1
:=

γ√
γ2 − 1

(I − Y X)−1BP1

BR̃2
:= γȲ C∗

P1

CR̃1
:= −γCP1

CR̃2
:= −γB∗

P1
X.

Note it was shown in [36] that R̃ is invertible in R(m+n)×(n+m). In fact, R̃ in this paper is
equivalent to R−1 in [34–36], where

R :=




AP1
+ 1

γ2−1BP1
B∗

P1
X + γ2

γ2−1 Ȳ X∗BP1
B∗

P1
X BR̃2

γ
γ2−1 (I + Ȳ X∗)BP1

− 1√
γ2−1

CR̃2
0 1√

γ2−1
I

−CR̃1
I 0


 .

It was also shown in [36] that (R12)
−1, (R21)

−1 ∈ RH∞; and it was noted in [37] that the
realization for R was naturally induced by the problem structure described in [34–37].

The realization (6) is stabilizable and detectable since there exist matrices FR̃ :=
(

0
−CR̃1

)

and LR̃ := (−BR̃2
0 ) such that AR̃ + ( BR̃1

BR̃2 )FR̃ and AR̃ + LR̃

(
CR̃1

CR̃2

)
, respectively, are

Hurwitz.¶ The extension to [34, Proposition 1.1] is as follows.

Lemma 4. Given two LTI systems P1, P2 ∈ Rn×m, where P1 is strictly proper (see Footnote
§) but P2 is not necessarily strictly proper, and a number β ∈ (0, bopt(P1)), define a LTI system

R̃ (dependent on P1 and β) as above. Then

δν(P1, P2) ≤ β

m
||Fl(R̃, P2)||∞ ≤ 1 and the system in Fig. 9 is internally stable. (7)

¶Note that A
R̃
− B

R̃2
C

R̃1
= AP1

− BP1
B∗

P1
X.
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Proof. The difference between the statement of Lemma 4 and the statement of [34, Proposition
1.1] occurs at (7). In [34, Proposition 1.1], this condition reads

||Fl(R̃, P2)||∞ ≤ 1 and Fl(R̃, P2) ∈ RH∞;

whereas in Lemma 4, this condition reads

||Fl(R̃, P2)||∞ ≤ 1 and the system in Fig. 9 is internally stable.

Hence the aim of the proof is to establish that Fl(R̃, P2) ∈ RH∞ if and only if the system in
Fig. 9 is internally stable.

gf

R
a2 a1

P2

~

Figure 9. Internal stability of Fl(R̃, P2).

(⇐) This way is obvious since internal stability of the system in Fig. 9 is equivalent to
the transfer function matrix mapping (f ′ e′1 e′2)

′ to (g′ a′
1 a′

2)
′ (as shown in Fig. 10) being in

RH∞. Since Fl(R̃, P2) maps f to g, Fl(R̃, P2) thus belongs to RH∞.

+

+
+

+

e1

e2

a2

a1

gf

R

P2

~

Figure 10. Mapping of (f ′ e′1 e′2)
′ to (g′ a′

1 a′
2)

′.

(⇒) Let P1 and P2 have stabilizable and detectable realizations (AP1
, BP1

, CP1
) and

(AP2
, BP2

, CP2
, DP2

), respectively. From the realization for P1, construct a realization for R̃

as in (6). From Definition 8 in the Appendix, compute the induced realization for Fl(R̃, P2) to
be (

AFl
BFl

CFl
DFl

)
,

where

AFl
:=

(
AR̃ + BR̃2

DP2
CR̃2

BR̃2
CP2

BP2
CR̃2

AP2

)

BFl
:=

(
BR̃1

+
√

γ2 − 1BR̃2
DP2√

γ2 − 1BP2

)

CFl
:=
(

CR̃1
+ DP2

CR̃2
CP2

)

DFl
:=
√

γ2 − 1DP2
.
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This induced realization is stabilizable and detectable since there exist matrices FFl
=(

γ√
γ2

−1
B∗

P1
X 1√

γ2
−1

FP2

)
(where FP2

is a matrix such that AP2
+BP2

FP2
is Hurwitz) and LFl

=(
−γȲ C∗

P1

LP2

)
(where LP2

is a matrix such that AP2
+LP2

CP2
is Hurwitz) such that AFl

+BFl
FFl

and AFl
+ LFl

CFl
, respectively, are Hurwitz. (Direct substitution shows that AFl

+ LFl
CFl

is
Hurwitz. Proving that AFl

+BFl
FFl

is Hurwitz is more complicated and the reader is directed
to Appendix Section II.) By Theorem 9 in the Appendix, n̄(Fl(R̃, P2)) = n̄(V ), where V (s)
denotes the transfer function matrix mapping (f ′ e′1 e′2)

′ to (g′ a′
1 a′

2)
′ as shown in Fig. 10. If

Fl(R̃, P2) ∈ RH∞, then n̄(Fl(R̃, P2)) = 0 and so V ∈ RH∞. 2

The next result is a consequence of [34, Proposition 1.1]. The result states that stability of
a certain transfer function matrix, formed from R̃ and F , is guaranteed.

Lemma 5. Consider a generalized system F ∈ R(p+n)×(q+m) partitioned as in (1), with a
stabilizable and detectable realization as given by (2). Suppose that P0 := Fu(F, 0) = F22 has
an inherited realization (A, B2, C2) from the realization for F , and suppose further that this
realization is stabilizable and detectable (see Footnote † in Section 3). Then

R̃ ⋆

(
P0 F21

F12 F11

)
(8)

belongs to RH∞, where R̃ is defined as in (6).

Proof. Note that δν(P0, P0) = 0 < β, so by [34, Proposition 1.1], Fl(R̃, P0) ∈ RH∞. Next,
compute the induced realization for Fl(R̃, P0) as in Definition 8 of the Appendix, and note
that this induced realization is stabilizable and detectable (as was shown for the general case
of the induced realization Fl(R̃, P2) in the proof of Lemma 4). Since the induced realization
for Fl(R̃, P0) is stabilizable and detectable, and since Fl(R̃, P0) ∈ RH∞, then the ‘A’-matrix
of the induced realization for Fl(R̃, P0) is Hurwitz. This ‘A’-matrix is provided as follows:

(
A − B2B

∗
2X − γ2Ȳ C∗

2C2 γȲ C∗
2C2

−γB2B
∗
2X A

)
,

where X and Z are the stabilizing solutions to the corresponding generalized algebraic Riccati
equations and γ := 1

β
, Y := 1

γ2−1Z and Ȳ := Y (I − XY )−1. But computation of the induced

realization for (8), which is given by



A⋆ B⋆1
B⋆2

C⋆1
0 D21

C⋆2

√
γ2 − 1D12 D11


 , (9)

where

A⋆ :=

(
A − B2B

∗
2X − γ2Ȳ C∗

2C2 γȲ C∗
2C2

−γB2B
∗
2X A

)

B⋆1
:=

(
γ√

γ2−1
(I − XY )−1B2
√

γ2 − 1B2

)

B⋆2
:=

(
γȲ C∗

2D21

B1

)

C⋆1
:=
(
−γC2 C2

)

C⋆2
:=
(
−γD12B

∗
2X C1

)
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(see [32, Chapter 10.4] for state-space formula), shows that A⋆ is equal to the ‘A’-matrix of
the induced realization for Fl(R̃, P0). So (8) is in RH∞. 2

Remark 6. The induced realization for (8), as given by (9), is stabilizable and detectable
since A⋆ is Hurwitz.

We are now in the position to show that the LTI quantity on the LHS of (3) can be computed
via solving a LMI feasibility problem. Lemmas 4 and 5 are used to obtain an “upper bound” on
the LTI quantity on the LHS of (3), as stated in Theorem 7 below; then Theorem 7 forms part
of the solution algorithm for determining the scaled LTI ν-gap quantity exactly (to within a
predetermined tolerance). (This solution algorithm is provided in the next section.) In words,
Theorem 7 states the following: given P0 and F , if a system of LMI constraints dependent on
the LTI system R̃ and some given number β is feasible, then the scaled LTI ν-gap quantity on
the LHS of (3) is less than or equal to β.

Theorem 7. Suppose F ∈ R(p+n)×(q+m) is a generalized system partitioned as in (1), with a
stabilizable and detectable realization as given by (2); and suppose P0 := Fu(F, 0) has an
inherited realization (A, B2, C2) that is also stabilizable and detectable (see Footnote † in
Section 3). Consider the LTI uncertainty set δo and the set of constant diagonal matrix pairs D

defined earlier, and suppose that each δ ∈ δo has a given stabilizable and detectable realization
and that each induced realization for Fu(F, D−1

l δDr) is stabilizable and detectable (as defined
in Theorem 9 of the Appendix) . Given a β ∈ (0, bopt(P0)), then

inf
D̃=(Dl,Dr)∈D

sup
δ∈δo

δν(P0, Fu(F, D−1
l δDr)) ≤ β (10)

if ∃D̃ ∈ D : ∀ω ∈ R ∃dω ∈ R+ :

J∗(jω)

(
d2

ωIn 0
0 D2

r

)
J(jω) <

(
d2

ωIm 0
0 D2

l

)
,

where J := R̃ ⋆
(

P0 F21

F12 F11

)
, and R̃ ∈ R(n+m)×(m+n) is defined as in (6).

Proof. Define H :=
(

0 In

Ip 0

)
F
(

0 Iq

Im 0

)
so that J = R̃ ⋆ H and Fu(F, D−1

l δDr) =

Fl(H, D−1
l δDr). Then

inf
D̃=(Dl,Dr)∈D

sup
δ∈δo

δν(P0, Fu(F, D−1
l δDr)) ≤ β

⇐ ∃D̃ ∈ D : ∀δ ∈ δo δν(P0, Fu(F, D−1
l δDr)) ≤ β

⇔ ∃D̃ ∈ D : ∀δ ∈ δo ||Fl(R̃, Fl(H, D−1
l δDr))||∞ ≤ 1 and the system in Fig. 11 is

internally stable. (11)

The last equivalence of the above statement is true due to the following. From Lemma 4 we
know that

δν(P0, Fu(F, D−1
l δDr)) ≤ β

m
||Fl(R̃, Fl(H, D−1

l δDr))||∞ ≤ 1 and V ∈ RH∞,
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where V (s) denotes the transfer function matrix mapping (f ′ e′1 e′2)
′ to (g′ a′

1 a′
2)

′ as shown in
Fig. 12. Now construct a realization for R̃ as in (6); let a stabilizable and detectable realization
for a D−1

l δDr be given by (Ă, B̆, C̆, D̆) and let an induced realization for a Fl(H, D−1
l δDr)

(which is stabilizable and detectable due to the supposition in the theorem statement) be given
by (

Aη̄ Bη̄

Cη̄ Dη

)
,

where Aη̄ := ( 0 I
I 0 )Aη ( 0 I

I 0 ), Bη̄ := ( 0 I
I 0 )Bη, Cη̄ := Cη ( 0 I

I 0 ) and Aη, Bη, Cη are given in
Definition 8 of the Appendix. Then V ∈ RH∞ if and only if the ‘A’-matrix of the induced
realization for V (s), given by (

AV BV

CV DV

)

where

AV :=

(
AR̃ + BR̃2

DηCR̃2
BR̃2

Cη̄

Bη̄CR̃2
Aη̄

)

BV :=

(
BR̃1

+
√

γ2 − 1BR̃2
Dη BR̃2

Dη BR̃2√
γ2 − 1Bη̄ Bη̄ 0

)

CV :=




CR̃1
+ DηCR̃2

Cη̄

CR̃2
0

DηCR̃2
Cη̄




DV :=





√
γ2 − 1Dη Dη I√
γ2 − 1I I 0√

γ2 − 1Dη Dη I



 ,

is Hurwitz [33, Lemma A.4.1].

H

d

f g

Dr Dl
-1

a2 a1

R
~

Figure 11. Internal stability of Fl(J, D−1
l δDr).

Now construct the induced realization for J as in (9), noting that stabilizability and
detectability of this realization is guaranteed (see Remark 6). Let Ū(s) denote the transfer
function matrix mapping (f ′ d′1 d′2)

′ to (g′ z′ w′)′ as shown in Fig. 13. It is true that Ū ∈ RH∞
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H

d

f g

Dr Dl
-1

R
~

+

+
+

+

e1

e2
a2

a1

Figure 12. Mapping of (f ′ e′1 e′2)
′ to (g′ a′

1 a′
2)

′.

if and only if the ‘A’-matrix of the induced realization for Ū(s), given by
(

AŪ BŪ

CŪ DŪ

)

where

AŪ :=

(
A⋆ + B⋆2

QD̆C⋆2
B⋆2

QC̆

B̆RC⋆2
Ă + B̆RD11C̆

)

BŪ :=

(
B⋆1

+
√

γ2 − 1B⋆2
QD̆D12 B⋆2

QD̆ B⋆2
Q√

γ2 − 1B̆RD12 B̆R B̆RD11

)

CŪ :=




C⋆1
+ D21QD̆C⋆2

D21QC̆

RC⋆2
RD11C̆

QD̆C⋆2
QC̆




DŪ :=




√
γ2 − 1D21QD̆D12 D21QD̆ D21Q√

γ2 − 1RD12 R RD11√
γ2 − 1QD̆D12 QD̆ Q


 ,

R := (I − D11D̆)−1 and Q := (I − D̆D11)
−1, is Hurwitz. A simple calculation shows that

AV = AŪ .
Note that

Fl(R̃, Fl(H, D−1
l δDr)) = Fl(J, D−1

l δDr) = Fu(G, δ),

where G :=
(

0 Dr

In 0

)
J
(

0 Im

D
−1

l
0

)
. This means that (11) holds

⇔ ∃D̃ ∈ D : ∀δ ∈ δo ||Fu(G, δ)||∞ ≤ 1 and the system in Fig. 11 is internally stable

⇔ ∃D̃ ∈ D : sup
ω∈R

µδs
(G(jω)) ≤ 1, (12)

where µ is the structured singular value with respect to the structured set δs :={(
δ 0

0 δ̂

)
: δ̂ ∈ RHm×n

∞ , ‖δ̂‖∞ < 1, δ ∈ δo

}
, using [32, Theorem 11.9] and noting that J ∈

RH∞ from Lemma 5. Finally, let dω ∈ R+ such that
(

Iq 0
0 dωIm

)(
δ 0

0 δ̂

)(
Ip 0
0 1

dω
In

)
=

(
δ 0

0 δ̂

)
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z

w

+

++

+

H

d

f g

Dr Dl
-1

d2

d1

R
~

Figure 13. Mapping of (f ′ d′
1 d′

2)
′ to (g′ z′ w′)′.

for all

(
δ 0

0 δ̂

)
∈ δs. At each frequency ω, µδs

(G(jω)) is equal to

inf
dω∈R+

σ̄(

(
0 Dr

dωIn 0

)
J(jω)

(
0 1

dω
Im

D−1
l 0

)
)

from [32, Theorem 11.5], where σ̄ denotes the maximum singular value. So (12) holds

⇐ ∃D̃ ∈ D : ∀ω ∈ R ∃dω ∈ R+ : σ̄(

(
0 Dr

dωIn 0

)
J(jω)

(
0 1

dω
Im

D−1
l 0

)
) ≤ 1

⇔ ∃D̃ ∈ D : ∀ω ∈ R ∃dω ∈ R+ : J∗(jω)

(
d2

ωIn 0
0 D2

r

)
J(jω) ≤

(
d2

ωIm 0
0 D2

l

)
.

2

The implications that are not necessary and sufficient in the above proof could be easily
tightened to necessary and sufficient implications by replacing several ≤ with < and considering
the closed set δ and R∪{∞} where appropriate, similarly to the proof of Theorem 2. However,
one key equivalence in the above proof relating a ν-gap ball to a H∞-ball (see Lemma 4 based
on [34, Proposition 1.1]) is only stated in terms of non-strict inequalities. It may or may not
be possible to rewrite Lemma 4 with strict inequalities, thereby allowing for a tightening of
Theorem 7 so that it is necessary and sufficient; this has not been investigated in this paper.
At this stage, we simply point out that the condition in Theorem 7, as written, is “close to”
necessary for (10) to hold, as necessity is only lost at closure of sets δo, R, D.

5. SOLUTION ALGORITHM

A solution algorithm that can be used to determine the exact scaled LTI quantity on
the LHS of (3) is now provided. The solution algorithm itself is based on a standard
bisectional search. The notion is to use Theorem 7 to determine feasibility of a system
of LMI constraints with respect to a test value β. Iterations of the bisectional line search
are implemented over the interval (0, bopt(P0)) to select subsequent test values for β. The
direction in which the line search proceeds depends on the ‘true’ or ‘false’ result acquired
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by solving the LMI feasibility problem: a ‘false’ result suggests that a larger test β should
be chosen; while a ‘true’ result indicates one can try a smaller test β. Consequently, the
LTI quantity inf

D̃=(Dl,Dr)∈D
supδ∈δo

δν(P0, Fu(F, D−1
l δDr)) is achieved to within a sufficiently

small pre-determined tolerance. Provided that the LTI quantity obtained is smaller than the
generalized robust stability margin bP0,K achieved with some controller K that internally
stabilizes the nominal plant, then internal stability of the system [PLTV , K] for all time-varying
perturbations ∆ ∈ ∆ is guaranteed.

The complete solution algorithm is as follows:

1) Set the bounds on possible β to be αl = 0 and αr = bopt(P0). Set a sufficiently small
tolerance ǫ > 0 for the iterative bisections with respect to finding β to end. Select an
initial β0 = αr − ǫ and set βfeas = bopt(P0). Set i = 0. Goto Step 2.

2) Given a βi, solve the convex optimization problem: “does there exist a D̃ ∈ D such that,
for each ω ∈ R, there exists a corresponding dω ∈ R+ such that

J∗(jω)

(
d2

ωIn 0
0 D2

r

)
J(jω) ≤

(
d2

ωIm 0
0 D2

l

)
,

where J := R̃ ⋆

(
P0 F21

F12 F11

)
, and R̃ is defined as in (6)”. Now,

i) If the optimization problem is feasible, set βfeas = βi and βi+1 = αl+βi

2 . Update
αr = βi. Goto Step 2iii.

ii) If the optimization problem is not feasible, test if βfeas − βi ≤ ǫ. If yes, then end.

If no, set βi+1 = βi+αr

2 . Update αl = βi. Goto Step 2iii.
iii) Set i = i + 1 and goto Step 2.

If βfeas < bP0,K , where K is some internally stabilizing controller, then [PLTV , K] is internally
stable for all ∆ ∈ ∆. If not, internal stability of [PLTV , K] has not been determined (and a
possibility if βfeas 6= bopt(P0) is to choose a different controller to obtain a larger stability
margin).

The convex optimization problem in Step 2 of the solution algorithm is easily solved using
Matlab’s LMI toolbox for instance. A numerical example follows in the next section for
completeness.

6. NUMERICAL EXAMPLE

The following example illustrates the implementation of the solution algorithm. The example
has been taken from [38]. In [38], an optimization problem that integrates a number of steps of
the standard H∞ loop-shaping design procedure [39] is introduced. The idea is to maximize the
generalized robust stability margin of the shaped plant Ps = W2PW1, where P is the scaled
nominal open-loop plant, over allowable loop-shaping weights W1 and W2, while ensuring that
the resulting loop-shape lies in a pre-defined region that characterizes the desired performance
specifications (see Fig. 14).
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v1

v2

+

-

-

+

yu

PS

K

Figure 14. H∞ loop-shaping framework.

The plant used in the example in [38] is a scaled-down version of the high incidence research
model developed by the Defence Evaluation and Research Agency in Bedford, UK. A physical
model of this was constructed at the University of Cambridge in order to investigate problems
associated with the control of air-vehicles at high angles of attack. Details of the experiment
carried out on this plant may be found in [40].

Input data for the following was given in [38, Section 5]: the scaled nominal open-loop
plant P ; the loop-shape boundaries; and the loop-shape weight singular value and condition
number bounds. Implementation of the algorithm presented in [38] (for the case in which a
diagonal pre-compensator W1 is required and the post-compensator W2 is held fixed) produced
the maximized value of bopt(Ps), the loop-shaping weights W1 and W2 that achieved this
maximized robust stability margin, and a robustly (in terms of stable LTI perturbations to
the coprime factors of Ps) stabilizing controller K∞ as output. In particular, the shaped plant
Ps = W2PW1 was found to be given by the state-space model shown in Fig. 15, and bopt(Ps)
was found to be 0.376 using Matlab’s µ-Analysis and Synthesis Toolbox “ncfsyn” function.




0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-23.8 -3.36 4.60-0.239 11.8 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-16.8-0.024822.8-0.916 0 0 9.83 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -50.0 63.2 0 0 112 -9590 -1530-1250 0 0 0 0 -45300 0
0 0 0 0 0 -40.0 0 0 -142 12100 1930 1580 0 0 0 0 57400 0
0 0 0 0 0 0 -50.0 63.2 0 0 0 0 -58.0 10600 -145 -1320 0 -55500
0 0 0 0 0 0 0 -40.0 0 0 0 0 73.3 -13400 183 1670 0 70200
0 0 0 0 0 0 0 0 -0.00561 1.14 0.1780.123 0 0 0 0 -15.9 0
0 0 0 0 0 0 0 0 -1.14 -258 -43.9 -74.7 0 0 0 0 -1360 0
0 0 0 0 0 0 0 0 -0.178 -43.9 -7.52 -13.9 0 0 0 0 -216 0
0 0 0 0 0 0 0 0 0.123 74.7 13.9 -43.9 0 0 0 0 177 0
0 0 0 0 0 0 0 0 0 0 0 0 -0.00271 1.52 -0.0158-0.120 0 8.20
0 0 0 0 0 0 0 0 0 0 0 0 -1.52 -262 5.05 72.0 0 1500
0 0 0 0 0 0 0 0 0 0 0 0 0.0158 5.05 -0.117 -2.76 0 -20.5
0 0 0 0 0 0 0 0 0 0 0 0 -0.120 -72.0 2.76 -43.9 0 187
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




Figure 15. State-space model of Ps.

Suppose a control system designer wanted to determine to what extent the feedback
interconnection shown in Fig. 14 would remain internally stable in the face of LTV uncertainty.
For instance, consider the uncertain shaped plant shown in Fig. 16, where ∆1 and ∆2

represent output multiplicative and input feedback LTV uncertainties, respectively. Formally,
the uncertain shaped plant model shown in Fig. 16 is described by

(I + ǫ1∆1)Ps(I − ǫ2∆2)
−1, (13)

where ∆1, ∆2 ∈ ∆ and ǫ1, ǫ2 ∈ [0, 1]. Recall that output multiplicative uncertainty may
typically represent output (sensor) errors or neglected high frequency dynamics, while input
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feedback uncertainty may represent low frequency parameter errors (see [32, Table 9.1]).
Expressing (13) in the standard structured uncertainty form gives

F =




0 ǫ1ǫ2Ps ǫ1Ps

0 ǫ2I I

I ǫ2Ps Ps





(and so F is a transfer function matrix which relates the structure of the uncertainties ∆1 and
∆2 to Ps).

u y
+

+

w1z1

+

+

PS

D1
e1

z2w2
D2

e2

Figure 16. Open-loop shaped plant with uncertainty.

The solution algorithm presented in this paper can be, and was, used to determine stability
robustness of the uncertain feedback interconnection. The input to the algorithm consisted of
the state-space model of the shaped plant Ps as given in Fig. 15, a (stabilizable and detectable)
state-space model for the transfer function matrix F such that the state-space model for Ps

was inherited from F and the realizations for F21 and F12 had no unstable invariant zeros,
and the size of the scaling factors ǫ1 and ǫ2. The algorithm was coded up in Matlab 6.5. One
hundred equally spaced frequency points on a logarithmic scale between ω = 10−4 and 104

rad/s were chosen for Step 2 of the algorithm and a tolerance of 0.001 was chosen for Step 1.
First, stability robustness of the system subject only to output multiplicative uncertainty

was investigated. Four hundred and one evenly spaced scaling factors ǫ1 were chosen from
between [0, 1] to represent different sizes of the uncertainty, while ǫ2 was set fixed at zero. An
algorithm output quantity βfeas (representative of the LTI quantity on the LHS of (3)) was
produced for each of the 401 pairs of uncertainty scaling factors (ǫ1, ǫ2). The results for where
ǫ1 ∈ [0, 0.5] are shown in Fig. 17. For example, a size of ǫ1 = 0.4975 resulted in a βfeas of 0.367,
which is less than bopt(Ps) = 0.376. This means that the interconnection [Ps, K∞] subject to
LTV output multiplicative uncertainties with scaling factors of size up to and including 0.4975
as described by (13), will be internally stable. Note that the next (larger) scaling factor tested
was ǫ1 = 0.5, for which the algorithm produced an output βfeas > bopt(Ps) and so internal
stability of [Ps, K∞] subject to LTV output multiplicative uncertainties with ǫ1 > 0.4975 was
not concluded here.

Next, stability robustness of the system subject only to input feedback uncertainty was
investigated. The scaling factor ǫ1 was set fixed at zero and βfeas was computed with respect
to 401 evenly spaced input feedback uncertainty scaling factors ǫ2 ranging from between [0, 1].
The results for where ǫ2 ranged between [0, 0.55] are shown in Fig. 18. Here, a size of ǫ2 = 0.5275
resulted in a LTI quantity of 0.374, which is less than bopt(Ps), and so [Ps, K∞] subject to
LTV input feedback uncertainties of size less than or equal to 0.5275 as described by (13) was
guaranteed to be internally stable. Again, internal stability when ǫ2 > 0.5275 could not be
concluded.

Finally, stability robustness of the feedback interconnection was tested with respect to when
Ps was subjected to both output multiplicative and input feedback LTV uncertainties. For
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Figure 17. The quantity βfeas with respect to the size of the output multiplicative uncertainty.
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Figure 18. The quantity βfeas with respect to the size of the input feedback uncertainty.

example, when the scaling factors were set to ǫ1 = 0.35 and ǫ2 = 0.38, the algorithm produced a
βfeas of 0.371, meaning that [Ps, K∞] subject to both output multiplicative and input feedback
LTV uncertainties of size 0.35 and 0.38, respectively, as described by (13), is guaranteed to be
internally stable.
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7. CONCLUSIONS AND FUTURE WORK

The scaled small gain condition, traditionally used to determine stability robustness of LTI
nominal systems subject to structured LTV uncertainty, was utilized to formulate a stability
robustness condition for the same problem in a scaled LTI ν-gap metric framework. It
was shown that the scaled LTI ν-gap metric condition can be checked via solving a LMI
feasibility problem (as can the scaled small gain condition). A key difference between the
scaled small gain condition and the condition presented in this paper is that the LMI
feasibility problem associated with the scaled LTI ν-gap metric condition is independent of
knowledge about the controller. Thus, the scaled LTI ν-gap metric condition provides a single
constraint on a controller (in terms of a large enough generalized robust stability margin) that
(sufficiently) guarantees to stabilize all plants in the uncertainty set. Further investigation into
the conservatism of the test is now required.

APPENDIX

I. INDUCED REALIZATIONS FOR LFTS

In this section, the induced realization for an upper or lower linear fractional transformation
is formally defined. We also present a result concerning stabilizability and detectability of
induced realizations.

Let a stabilizable and detectable realization‖ for a generalized system F ∈ R(p+n)×(q+m) be
given by




A B1 B2

C1 D11 D12

C2 D21 0



 , (14)

and let stabilizable and detectable realizations for a controller K ∈ Rm×n and an uncertain
system E ∈ Rq×p be given by (Â, B̂, Ĉ, D̂) and (Ă, B̆, C̆, D̆), respectively. Note that a
realization (A, B, C, D) for a transfer function matrix X(s) is stabilizable and detectable if and
only if n̄(X) = λ̄(A), where n̄(·) denotes the number of closed RHP poles counted according
to the usual notion of the Smith-McMillan decomposition, and λ̄(·) denotes the number of
eigenvalues with real part in the closed RHP. This result is a consequence of the fact that
the only uncontrollable and unobservable modes in (A, B, C, D) must be in Re(s) < 0 if the
realization is stabilizable and detectable.

Definition 8. The induced realization for∗∗

(a) Fl(F, K) is the realization formed from the above-stated realizations for F ∈ R(p+n)×(q+m)

‖The D22 term has been absorbed into the controller by a loop shifting argument (see [33, Section 4.6] for
instance).
∗∗The induced realization is also referred to as the natural realization in the literature (see [33, Lemma 4.1.2]
for instance).
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and K ∈ Rm×n as given by (
Aθ Bθ

Cθ Dθ

)
,

where

Aθ :=

(
A + B2D̂C2 B2Ĉ

B̂C2 Â

)

Bθ :=

(
B1 + B2D̂D21

B̂D21

)

Cθ :=
(

C1 + D12D̂C2 D12Ĉ
)

Dθ := D11 + D12D̂D21;

(b) Fu(F, E) is the realization formed from the above-stated realizations for F ∈ R(p+n)×(q+m)

and E ∈ Rq×p as given by (
Aη Bη

Cη Dη

)
, (15)

where

Aη :=

(
Ă + B̆RD11C̆ B̆RC1

B1QC̆ A + B1QD̆C1

)

Bη :=

(
B̆RD12

B1QD̆D12 + B2

)

Cη :=
(

D21QC̆ D21QD̆C1 + C2

)

Dη := D21QD̆D12

and R := (I − D11D̆)−1, Q := (I − D̆D11)
−1.

Stabilizability and detectability of the induced realization for Fu(F, E) is considered in the
next result.

Theorem 9. Consider a generalized plant F ∈ R(p+n)×(q+m) and a LTI uncertainty E ∈
Rq×p. Suppose that a stabilizable and detectable realization for F is given by (14) and that E

has a given stabilizable and detectable realization. Then the induced realization for Fu(F, E),
defined as in Definition 8, is stabilizable and detectable if and only if n̄(Fu(F, E)) = n̄(T ),
where n̄(·) denotes the number of closed RHP poles counted according to the usual notion of
the Smith-McMillan decomposition, and T (s) denotes the transfer function matrix mapping
(d′2 d′1 u′)′ to (w′ z′ y′)′ as shown in Fig. 19.

Also, the induced realization for Fu(F, E) is

(a) detectable if

(
A − λI B1

C2 D21

)
has full column rank ∀Re(λ) ≥ 0;

(b) stabilizable if

(
A − λI B2

C1 D12

)
has full row rank ∀Re(λ) ≥ 0.

Proof. Parts (a) and (b) of the final part of Theorem 9 are from [32, Lemma 16.1], with their
proof supplied in that reference. It remains to prove the necessary and sufficient condition for
stabilizability and detectability of the induced realization.
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Figure 19. Mapping of (d′
2 d′

1 u′)′ to (w′ z′ y′)′.

Let the stabilizable and detectable realization for E be given by (Ă, B̆, C̆, D̆). The induced
realization for T (s) is given by (

AT BT

CT DT

)
, (16)

where

AT :=

(
Ă + B̆RD11C̆ B̆RC1

B1QC̆ A + B1QD̆C1

)

BT :=

(
B̆RD11 B̆R B̆RD12

B1Q B1QD̆ B1QD̆D12 + B2

)

CT :=




QC̆ QD̆C1

RD11C̆ RC1

D21QC̆ D21QD̆C1 + C2




DT :=




Q QD̆ QD̆D12

RD11 R RD12

D21Q D21QD̆ D21QD̆D12





and R := (I − D11D̆)−1, Q := (I − D̆D11)
−1. This induced realization is stabilizable and

detectable. To see detectability, suppose that



Ă + B̆RD11C̆ − λI B̆RC1

B1QC̆ A + B1QD̆C1 − λI

QC̆ QD̆C1

RD11C̆ RC1

D21QC̆ D21QD̆C1 + C2




×
(

w1

w2

)
=




0
0
0
0
0




.

Then, row 3 and row 4 ⇒ C1w2 = 0 and C̆w1 = 0; row 5 ⇒ C2w2 = 0, row 1 ⇒ (Ă−λI)w1 = 0
and row 2 ⇒ (A − λI)w2 = 0. Since (

(
C1

C2

)
, A) and (C̆, Ă) are detectable, w1 = 0 and w2 = 0

for all Re(λ) ≥ 0 and so (16) is detectable. Stabilizability of (16) may be similarly established.
So n̄(T ) = λ̄(AT ).

But from observation of (15), AT = Aη. Consequently, it must be shown that (15) is
stabilizable and detectable if and only if n̄(Fu(F, E)) = λ̄(Aη). If (15) is stabilizable and
detectable, then n̄(Fu(F, E)) = λ̄(Aη). If (15) is not stabilizable and/or not detectable, then
Aη has an unstable hidden mode which implies that n̄(Fu(F, E)) < λ̄(Aη). 2
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Parts (a) and (b) of the final part of Theorem 9 have been given because the necessary and
sufficient condition stated in the earlier part of the theorem is dependent on E, and can hence
be difficult to check. This is as opposed to the sufficient conditions in (a) and (b), which are
equivalent to requiring no unstable invariant zeros of the realizations

(
A B1

C2 D21

)
and

(
A B2

C1 D12

)
,

for F21 and F12, respectively.
Now suppose that P0 := Fu(F, 0) = F22 has a realization (A, B2, C2) which is inherited from

(14), and suppose further that this realization is stabilizable and detectable (see Footnote † in
Section 3). Then suppose that K has a stabilizable and detectable realization (Â, B̂, Ĉ, D̂), and
that [P0, K] as shown in Fig. 1 is internally stable. An immediate consequence is stabilizability
and detectability of the induced realization for Fl(F, K). To see this, suppose that x and x̂

denote the state vectors for the realizations for P0 and K, respectively; the state equations
corresponding to Fig. 1 with v1 = v2 = 0 are

ẋ = Ax + B2u (17)

y = C2x (18)

˙̂x = Âx̂ + B̂y (19)

u = Ĉx̂ + D̂y. (20)

Solving (18) and (20) for u and y, and substituting into (17) and (19) gives
(

ẋ
˙̂x

)
= Ã

(
x

x̂

)
,

where Ã :=
(

A+B2D̂C2 B2Ĉ

B̂C2 Â

)
is Hurwitz [32, Lemma 5.2]. But Ã = Aθ, where Aθ is as given

in Definition 8. So the induced realization for Fl(F, K) is stabilizable and detectable. In fact,
since Aθ is Hurwitz (meaning that the system in Fig. 20 is internally stable), we also know
that Fl(F, K) ∈ RH∞ (see [32, Lemma 12.2]).

K

zw

F

Figure 20. System representation of Fl(F, K).

II. AFl
+ BFl

FFl
IS HURWITZ

The proof of Lemma 4 requires us to show that the matrix denoted AFl
+ BFl

FFl
is Hurwitz.

First, a review of the chain-scattering representation of a system, particularly R̃ as defined in
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(6), is required. Recall the input-output representation of R̃:
(

z

a1

)
= R̃

(
w

a2

)
, (21)

as shown in Fig. 21. Since (R̃21)
−1 exists and is proper, (21) can be alternatively represented

as (
z

w

)
= CHAIN(R̃)

(
a2

a1

)
, (22)

where

CHAIN(R̃) :=

(
R̃12 − R̃11(R̃21)

−1R̃22 R̃11(R̃21)
−1

−(R̃21)
−1R̃22 (R̃21)

−1

)
.

Relation (22) is referred to as the chain-scattering representation of R̃, as shown in Fig. 22. A
state-space representation for CHAIN(R̃) is




AR̃ − 1√
γ2−1

BR̃1
CR̃2

BR̃2

1√
γ2−1

BR̃1

CR̃1
I 0

− 1√
γ2−1

CR̃2
0 1√

γ2−1
I


 (23)

(refer to [41, Chapter 4.2] for the general state-space formula for CHAIN(·)).

R
~

a2a1

wz

Figure 21. Input-output representation of R̃.

a2

a1
w

z

CHAIN (R)
~

Figure 22. Chain-scattering representation of R̃.

Now CHAIN(R̃) ∈ RH∞ since

CHAIN(R̃) =

(
0 I

I 0

)
CHAIN(R)

(
0 I

I 0

)

and CHAIN(R) ∈ RH∞ [34]. Furthermore, (23) is stabilizable and detectable since there

exist matrices F̄ :=
(−CR̃1

CR̃2

)
and L̄ := (−BR̃2

−BR̃1 ) such that Ā +
(

BR̃2

1√
γ2

−1
BR̃1

)
F̄ and

Ā+L̄

(
CR̃1

− 1√
γ2

−1
CR̃2

)
, respectively, are Hurwitz, where Ā := AR̃− 1√

γ2−1
BR̃1

CR̃2
(see Footnote

¶ of Section 4). So Ā is Hurwitz. But

AFl
+ BFl

FFl
=

(
Ā •
0 AP1

+ BP1
FP1

)
,
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where • denotes a “don’t care” element, so AFl
+ BFl

FFl
is Hurwitz.
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