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Abstract— Shared Autonomous Vehicles (SAVs) are likely
to become an important part of the transportation system,
making effective human–SAV interactions an important area
of research. This paper introduces a dataset of 200 human-
SAV interactions to further this area of study. We present
an open-source human–SAV conversational dataset, comprising
both textual data (e.g., 2,136 human–SAV exchanges) and
empirical data (e.g., post-interaction survey results on a range
of psychological factors). The dataset’s utility is demonstrated
through two benchmark case studies: First, using random forest
modeling and chord diagrams, we identify key predictors of
SAV acceptance and perceived service quality, highlighting the
critical influence of response sentiment polarity (i.e., perceived
positivity). Second, we benchmark the performance of an LLM-
based sentiment analysis tool against the traditional lexicon-
based TextBlob method. Results indicate that even simple
zero-shot LLM prompts more closely align with user-reported
sentiment, though limitations remain. This study provides
novel insights for designing conversational SAV interfaces and
establishes a foundation for further exploration into advanced
sentiment modeling, adaptive user interactions, and multimodal
conversational systems.

I. INTRODUCTION

The rapid advancement of autonomous vehicle (AV) tech-
nology is transforming urban mobility, with shared au-
tonomous vehicles (SAVs) anticipated to play a central role
in future transportation systems [1], [2]. As SAVs transition
from controlled experimental settings to real-world deploy-
ment, understanding the dynamics of human interaction
with these vehicles and identifying key predictors of user
acceptance becomes increasingly critical [3], [4]. In the
context of high autonomy levels (SAE Levels 4/5), where
vehicles are operated without the involvement of human
drivers, successful adoption is influenced by a combination of
advanced technical capabilities and effective human-centric
interactions driven by seamless communication interfaces
[5]. In particular, conversational interactions may serve as
a key interface for trip requests, status updates, and in-ride
assistance.

However, current research has largely overlooked the role
of conversational dialogue in shaping psychological aspects
such as psychological ownership, perceived service quality,
and overall user acceptance. Prior studies on human–SAV in-
teractions have primarily utilized structured surveys, driving
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simulations (e.g., Wizard-of-Oz protocols, motion-based sim-
ulators, and virtual reality environments), and assessments
focusing on vehicle interior and exterior design [3], [6]–
[8]. Although valuable, these methods typically focus on
static or predefined scenarios, offering limited insight into
the real-time dynamic conversational interactions users will
experience in fully autonomous vehicles.

Recent attempts to bridge this gap have begun assembling
conversational interaction datasets. For instance, [9] devel-
oped a multimodal Wizard-of-Oz dataset consisting of 30
hours of in-cabin interactions (10,590 utterances) collected
from 30 participants during a scavenger-hunt activity, in-
tegrating speech, audio, and visual data to enhance intent
recognition within vehicle cabins. Similarly, [10] introduced
the doScenes dataset, pairing 1,000 nuScenes driving clips
with natural-language instructions to enable voice-driven AV
planning. However, neither of these datasets specifically
addresses unconstrained conversational exchanges between
users and SAV agents, such as analyzing how users perceive
the sentiment or appropriateness of SAV responses to their
requests.

Meanwhile, large language models (LLMs) like Chat-
GPT, have emerged as powerful tools capable of gener-
ating human-like conversational experiences across diverse
domains, including healthcare, education, and intelligent
vehicles [11]–[14]. Using LLMs for both conversational data
collection and analysis enables granular measurements of
user sentiment like polarity and subjectivity directly from
dialogue [15].

In this study, we present a novel dataset comprising
conversational interactions between 50 participants and four
different SAE Level 5 SAV agents, simulated using GPT-
3.5 turbo with varying prompting strategies. Our dataset
includes:

• Conversational Textual Data: 2,136 request-response
exchanges, accompanied by open-ended and interview
insights.

• Empirical Survey Data: Structured post-interaction
responses capturing user perceptions of a range of psy-
chological factors, and self-reported sentiment measures
(Polarity and Subjectivity) toward SAV responses.

To illustrate the utility of our dataset, we provide two
benchmark case studies:

1) Case Study 1 — SAV Acceptance Analysis
(Empirical Survey Data): We apply the
Machine-Learning-Chord-Diagram framework
proposed by [4], employing random forest modeling
to analyze and visualize the most influential item-level



predictors of service quality and intention to use
SAVs.

2) Case Study 2 — Sentiment Analysis (Conversational
Textual Data): We use an LLM-based sentiment clas-
sifier on individual conversational exchanges, extract-
ing metrics (minimum, maximum, mean, median) for
polarity and subjectivity. We then benchmark perfor-
mance against a traditional lexicon-based sentiment
analysis tool (TextBlob) and self-reported sentiment
scores.

The remainder of this paper is organized as follows. Sec-
tion II details our dataset creation process and methodology.
Section III presents the first case study, analyzing acceptance
predictors derived from survey data. Section IV evaluates
LLM-based sentiment analysis performance in the second
case study. Finally, Section V concludes with a discussion of
study limitations and recommendations for future research.

II. DATASET & METHODOLOGY

This section describes the design of the user study, the data
collection approach, the structure of the resulting dataset, and
details regarding data accessibility.

A. User Study Design and Data Collection

The user study was developed to investigate how different
conversational styles and prompting strategies influence user
perceptions, specifically regarding Psychological Ownership
(PO), Anthropomorphism (A), Quality of Service (QoS),
Disclosure Tendency (DT), Perceived Enjoyment (PE), Be-
havioral Intention (BI), and the sentiment (Polarity and Sub-
jectivity) associated with SAV responses. Each participant
interacted with four simulated SAE Level 5 SAV agents,
powered by OpenAI’s gpt-3.5-turbo model. The SAV
user interface (UI) was built in Python using the gradio
package and integrated with the OpenAI API [16], [17].
The SAV agents were differentiated by distinct prompting
strategies as follows:

• SAV 1 (Standard/Control): Provided baseline func-
tionality such as navigation assistance, climate control
adjustments, and media management, without additional
personalization.

• SAV 2 (Standard + Psychological Ownership): En-
hanced interactions designed explicitly to foster users’
sense of ownership over the vehicle.

• SAV 3 (Standard + Anthropomorphism): Participants
selected a preferred anthropomorphic personality (e.g.,
friendly, sassy, or cool), facilitating personalized and
human-like interactions.

• SAV 4 (Combined PO + Anthropomorphism): Inte-
grated both psychological ownership and anthropomor-
phic strategies, aiming to reinforce personalization and
ownership engagement simultaneously.

All SAV agents were explicitly instructed to comply
with Australian national traffic laws and specific regulations
applicable within the State of Victoria, aiming for realistic
and safe responses throughout the interactions. The exact

wording of the prompts is provided in the dataset documen-
tation.

Data collection was conducted with ethical approval from
the Monash University Human Research Ethics Committee
(MUHREC)1. The user studies were held from April 30,
2024, to July 2, 2024. A total of 50 participants were
recruited from an Australian university community and
external networks. The study employed a within-subjects
experimental design, meaning each participant interacted
with all four SAV agents. To minimize potential ordering
effects or bias due to interaction sequence, the order in which
participants experienced each SAV agent was randomized.

Descriptive statistics, theoretical background and litera-
ture on the psychological factors investigated, a detailed
overview of the prompt design, statistical comparisons of
the effects of psychological ownership and anthropomorphic
strategies on user experience, and qualitative analysis of
participants’ feedback on perceived psychological ownership
are provided in [18]. The findings indicated that SAV4, which
combined both strategies, was perceived as more human-
like and elicited more positive user responses overall. In
this paper, we present the complete study design, release
the full de-identified conversational dataset, and analyze the
role of sentiment in human–SAV interactions through two
benchmark case studies.

The system architecture for conversational interactions is
illustrated in Fig. 1.

I wanna go to my 
parent's home, can 
you bring me there?

Of course! I can navigate you to your 
parent's home. Could you please 
provide me with the address, or 

shall I use your saved location for 
your parent's home?

I am an SAE 
Level 5 AV …

[GPT prompt]
(e.g., You are a 

SAE Level 5 AV … 
)

Python
‘gradio’ package: 

build the User Interface

Python
OpenAI API: access 
gpt-3.5-turbo model

Fig. 1: System architecture of the simulated SAV agent.

Prior to their interactions, participants completed a pre-
interaction survey capturing their prior experiences with
AI systems and their preferred anthropomorphic personal-
ity style for the SAV (Cool & sophisticated; Engaging &
friendly; or Sassy & tired). Preferences expressed in this
survey informed the configuration of SAV3 and SAV4 during
interactions.

A set of 15 in-vehicle interaction commands adapted
from those commonly used in existing vehicles such as the
Tesla Model Y [19] was provided to participants as example
requests. These commands covered key vehicle functions,
including climate control, vehicle settings, navigation, me-
dia controls, and contact management. A complete list of
these commands is available in the dataset documentation.
Participants were also encouraged to interact with the SAVs
freely and make requests in their own words, as they would
naturally do in real-life scenarios.

1Project ID: 40485



After each SAV interaction, participants completed a struc-
tured post-interaction survey designed to measure percep-
tions across the selected psychological factors. Additionally,
participants were briefly interviewed to capture qualitative
feedback on their experiences, particularly perceptions of
psychological ownership relative to previous SAV inter-
actions. All conversational exchanges were recorded and
stored.

At the end of the entire interaction sequence (all four
SAVs), participants completed a final survey collecting de-
mographic information and responded to open-ended ques-
tions exploring features that contribute to psychological
ownership, perceptions about sharing personal information
and other additional insights or feedback.

The complete survey instrument used in this study can be
found in the released dataset folder.

Overall, the collected data comprised:
• 2,136 conversational exchanges (request–response

pairs) between users and SAV agents;
• 200 structured post-interaction survey responses (four

responses per participant);
• 50 sets of open-ended qualitative statements or inter-

view transcripts (one per participant).
Collected data was anonymized to protect participant pri-

vacy and analyzed inline with the approved ethics protocol.
Even after broad recoding, several demographic records re-
mained unique (k = 1), and so the dataset failed k-anonymity
and we removed the demographic section from the public
release [20]. The demographic overview is available in [18].

B. Data Structure and Availability

The fully de-identified dataset and accompanying docu-
mentation will be publicly accessible via the Monash Bridges
repository, released under a CC BY 4.0 license. All files
are provided in widely used accessible formats (.xlsx, .pdf,
.pptx), facilitating easy reuse and analysis by the research
community.

1) Data Structure: The dataset comprises the following:
• Data human-SAV interaction.xlsx: Contains 2,136

conversational exchanges (request–response pairs) be-
tween users and SAV agents.

• Data Survey1-4.xlsx: Structured responses from post-
interaction surveys (four per participant), capturing
psychological ownership, anthropomorphism, quality of
service, disclosure tendency, perceived enjoyment, be-
havioral intention, and self-reported sentiment measures
(polarity and subjectivity) regarding SAV responses.

• Data survey open&end.xlsx: Pre-interaction survey
data assessing participants’ prior experience with AI
systems, their preferred anthropomorphic SAV person-
alities (e.g., friendly, cool), and responses to the final
survey completed at the end of the study.

• Data interview and openendedQ.xlsx: Transcribed
qualitative data from participant interviews and
responses to open-ended survey questions, capturing
nuanced user feedback and perceptions.

• Prompts.pptx: Prompts used for developing each of the
four SAV agents.

• Sample user input.pdf: Representative examples of
user commands, illustrating navigation requests, com-
fort adjustments, and emotional prompts.

• Survey.pdf: Full survey instrument utilized during the
study.

2) Access and Reuse: The dataset will be hosted for open
and persistent access.

• URL: https://doi.org/10.26180/29486447
• DOI: 10.26180/29486447
• License: CC BY 4.0 (Creative Commons Attribution)

III. CASE STUDY 1: ITEM IMPORTANCE IN PREDICTING
SAV ACCEPTANCE

A. Motivation

Identifying specific aspects of user experience that most
significantly influence SAV acceptance is crucial for de-
signing interfaces and interaction strategies that foster user
satisfaction and sustained use. Prior research has examined
various psychological factors influencing public acceptance
of SAVs and human-computer interaction more broadly, in-
cluding Psychological Ownership (PO) [2], [21], Anthropo-
morphism (A) [22], Disclosure Tendency (DT) [23], Quality
of Service (QoS) [2], Perceived Enjoyment (PE) [24], and
sentiment (Polarity and Subjectivity) [25].

Most previous studies have applied traditional statistical
methods, such as Structural Equation Modeling (SEM),
relying primarily on aggregate scores to explore these re-
lationships. Recent research, however, has demonstrated the
effectiveness of machine learning methods, such as Neural
Networks and Random Forests, in predicting user acceptance
of AVs [4], [26]. To overcome limitations associated with tra-
ditional SEM, particularly its inability to identify item-level
predictors, [4] introduced a predictive modeling framework
combined with chord diagrams, enabling researchers to visu-
alize the relative importance of specific questionnaire items.
This approach uncovers fine-grained insights into drivers
of various psychological factors and behavioral intentions,
providing actionable information for SAV interface designers
and service providers.

B. Prediction and visualization framework

In this study, we applied the predictive modeling and visu-
alization framework proposed by [4] to our post-interaction
survey dataset. The framework predicts each psychological
factor by averaging its corresponding survey items using
Random Forest models. For example, the Quality of Service
factor is computed from items QoS1–QoS3, which measure
user’s perceived SAV service quality (QoS1), communica-
tion pleasantness (QoS2), and recommendation likelihood
(QoS3). Full item descriptions are provided in the dataset
documentation. The relative importance of each item in pre-
dicting these factor-level scores was visualized through chord
diagrams. An example of how to interpret these diagrams is
given in Fig. 2.



Target variable

Fig. 2: Example chord diagram illustrating item-level impor-
tance in predicting a target variable. Two latent factors are
shown, each comprising multiple items used as predictors.
The width of each arc represents the relative importance of
the item, normalized such that the total importance across all
predictors sums to 100%. In this example, Item A3 emerges
as the most influential predictor among the six items.

Comparisons across the four SAVs reveal variations in user
perceptions attributable to different prompting strategies. The
resulting relative item importance is shown visually in Fig. 3.

C. Psychological ownership prompt effect - SAV1 vs. SAV2

When predicting Behavioral Intention to use SAVs, the
relative importance of the factor items for SAV1 and SAV2
is visualized in Fig. 3a and 3b, respectively. In SAV1,
the most influential item is QoS3 (recommend to others,
with a relative importance of 32.2%), followed by QoS1
(SAV service, 11.5%) and DT2 (tastes in music, 10.5%). In
contrast, SAV2 demonstrates a different pattern, with Polarity
emerging as the most influential item (22.4%), followed
by QoS1 (SAV service, 22.0 %) and QoS3 (recommend
to others, 14.7%). These findings suggest that integrating
psychological ownership prompts increases the influence of
the Polarity of SAV responses, indicating that users pay
more attention to the sentiment of the SAV responses. In
both groups, Polarity plays a key role in predicting Quality
of Service (QoS), with relative importance of 44.7% and
57.9% respectively, suggesting that users’ perceptions of
SAV responses significantly shape their overall evaluation
of the service.

Similarly, when predicting user’s Disclosure Tendency, A5
(feel compassion, 34.4%) emerged as the most important
predictor for SAV1, followed by PO3 (interaction enhances
my PO, 14.2%). While for SAV2, QoS2 (communication
is pleasant, 11.4%) and A5 (feel compassion, 10.1%) are
the most influential items. This reveals that after integrating
psychological ownership prompts, although the beliefs of
SAV can feel compassion is still important, the pleasantness
of communication becomes a more significant factor.

Another notable difference arises when predicting Psy-
chological Ownership. In SAV1, the most influential items

are A2 (personality, 10.0%), A3 (preferences and mood,
9.9%), and DT3 (feelings and emotions, 9.1%). In con-
trast, for SAV2, the most influential items are PE1 (fun to
interact, 12.2%), A3 (preferences and mood, 11.1%), and
A2 (personality, 11.0%). These results indicate that while
anthropomorphism-related items, particularly beliefs about
the SAV having its own personality and preferences, are
important in predicting psychological ownership for both
SAV groups, other factors differ. In SAV1, the willingness
to disclose personal feelings and emotions (DT3) plays a
more important role, whereas in SAV2, the enjoyment of
interaction (PE1) becomes a more critical factor.

D. Anthropomorphism prompt effect - SAV1 vs. SAV3

When comparing the relative importance of factor items
for SAV1 and SAV3 (Fig. 3c), diverse patterns emerge. In
predicting Behavioral Intention to use SAVs, the most influ-
ential items for SAV3 are QoS1 (SAV service, 20.5%), QoS2
(communication is pleasant, 17.3%), and QoS3 (recommend
to others, 14.1%). Compared to SAV1, participants appear
to place greater emphasis on whether communication with
the SAV is pleasant. Similar to the psychological ownership
prompt effect, the Polarity of SAV responses remains the
most important predictor of QoS in both groups, with a
relative importance of 44.7% in SAV1 and 43.0% in SAV3.

In predicting Disclosure Tendency, the most influential
items in SAV3 are QoS2 (communication is pleasant, 19.0%),
A2 (personality, 17.7%), and QoS3 (recommend to others,
16.6%), which differ from the most important predictors in
SAV1 (A5, PO3, PE1). This shift suggests that, after integrat-
ing anthropomorphism prompts, the QoS items, particularly
the pleasantness of communication and the likelihood of
recommending the SAV to others, become more critical in
predicting users’ willingness to disclose personal information
and emotions.

Surprisingly, when predicting Psychological Ownership,
the most influential items in SAV3 are similar to but distinct
from those in SAV2. For SAV3, the most important predictors
are PE1 (fun to interact, 10.7%), A4 (emotions, 10.2%),
and A1 (decision power, 9.5%). Compared to the control
group (i.e., SAV1, where A2, A3, and DT3 are the most
important predictors), these results indicate that, following
the integration of anthropomorphism prompts, factors such
as the enjoyment of interaction and beliefs about the SAV
having its own emotions and decision-making power play a
more significant role in predicting Psychological Ownership.

E. Combined prompt effect - SAV4

The combined group, SAV4 (Fig. 3d), integrates both PO
and A prompts. When predicting Behavioral Intention to use
SAVs, the most influential items are QoS1 (SAV service,
23.0%), QoS3 (recommend to others, 19.5%), and DT2
(tastes in music, 18.9%). These results are similar to SAV1
but show a higher relative importance for QoS1 and DT2,
and a lower relative importance for QoS3. This suggests
that while the quality of service and the likelihood of
recommending the SAV remain important predictors across
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(b) SAV2 - Standard + Psychological Ownership.
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(c) SAV3 - Standard + Anthropomorphism.

0
0

0

0

0

50

0

0
0

0
0

0

50

0

0

00
50

100
0

0

0

0

50
10

0
0

0
0

50

10
0

0

0

0

50
100

P
O

1:
 th

e
ve

hi
cl

e 
is

 m
in

e

P
O

2:
 h

ig
h 

de
gr

ee
 o

f
pe

rs
on

al
 o

w
ne

rs
hi

p

P
O

3:
 in

te
ra

ct
io

n

en
ha

nc
es

 m
y 

P
O

PO
4:

 I 
ow

n 
th

e 
ve

hi
cl

e

Psy
ch

ologica
l

Ownersh
ip

A1: decision power

A2: personality

A3: preferences
and mood

A4: emotions

A5: feel compassion

Anthropomorphism

Q
oS

1: S
AV

 service

Q
oS

2: com
m

unication

is pleasant

Q
oS

3: recom
m

end

to others

Q
ua

lit
y 

of
 S

er
vi

ceD
T1

: d
ai

ly
 ro

ut
e

DT2
: t

as
te

s 
in

 m
us

ic

DT3: fe
elin

gs

and emotio
ns

Disclosure Tendency

PE1: fun to interact

PE2: fun'sinfluence on BI

Perceived Enjoyment

Polarity

S
ubjectivity

B
ehavioural

Intention to U
se

(d) SAV4 - Standard + PO + A

Fig. 3: Chord Diagrams Showing Relative Importance of Predicting Target Factors. The arrows (chords) connect the predictor
items (start nodes) and the target variables (end nodes). The width of the chords indicates the relative importance of each
predictor item. The sum of the relative importance of each target variable (i.e., the overall questions) is 100%.

all four SAVs, the integration of both prompts enhances
the influence of users’ willingness to disclose their music
preferences, unlike the focus on Polarity seen in SAV2 and
SAV3.

When predicting Psychological Ownership, although An-
thropomorphism items still play a significant role, the will-
ingness to disclose daily routes (DT1, 8.7%) emerged as
the third most important predictor. Interestingly, when pre-
dicting QoS, while the Polarity of SAV responses remains

the most influential item (20.1%), its relative importance is
lower than in SAV1, SAV2, and SAV3. This suggests that
while the sentiment of SAV responses continues to be a
critical factor, the integration of psychological ownership and
anthropomorphism prompts shifts importance toward other
factors, such as willingness to disclose music preferences
(DT2, 16.9%) and the perception of interaction-enhanced
psychological ownership (PO3, 16.6%).

Notably, the integration of psychological ownership



prompts (in SAV2 and SAV4) increases the overall rela-
tive importance of the Psychological Ownership factor in
predicting other target variables. The relative importance is
higher in SAV2 (116.1%) and SAV4 (126.2%) compared to
SAV1 (105.7%) and SAV3 (82.4%). This finding suggests
that psychological ownership prompts reinforce the influence
of psychological ownership on users’ perceptions of other
factors, such as quality of service and anthropomorphism.

IV. CASE STUDY 2: USING LLMS AS SENTIMENT
ANALYSIS TOOLS

A. Motivation

Case Study 1 showed that conversational sentiment polar-
ity is the strongest item-level predictor of perceived Quality
of Service (QoS) across all four SAVs, and that QoS emerged
as the most critical factor predicting Behavioral Intention
(BI) to use SAVs. Even when aggregating importance at the
factor-level, polarity remained notably influential, especially
for SAV1, SAV2, and SAV3. These results point to a practical
next step: if polarity drives user perceptions, can we measure
it automatically? Specifically, can we reliably derive polarity
and subjectivity measures (i.e., sentiment analysis metrics)
directly from conversational text to predict user ratings?
Addressing this question is the focus of Case Study 2,
where we benchmark two sentiment-analysis approaches
and evaluate how well their outputs track participants’ self-
reported sentiment.

Sentiment analysis integrates natural language process-
ing (NLP), computational linguistics, and text analytics
to extract and interpret emotional tone from textual data
[27]. Traditional sentiment tools, such as TextBlob, adopt a
lexicon-based method suitable for sentence-level evaluations.
TextBlob offers straightforward interfaces for various NLP
tasks – including sentiment scoring (polarity and subjec-
tivity), part-of-speech tagging, and noun phrase extraction
[28]. Polarity scores range from –1 (extremely negative)
to 1 (extremely positive), while subjectivity ranges from
0 (highly objective) to 1 (highly subjective). With recent
advancements in LLMs, researchers have begun exploring
their effectiveness in sentiment analysis tasks. For example,
[15] demonstrated that zero-shot LLM approaches, such as
GPT-3.5 and GPT-4, can match or exceed traditional trans-
fer learning methods across various sentiment benchmark
datasets.

In this case study, we evaluate two sentiment de-
tection strategies on conversational data collected during
human–SAV interactions: a traditional lexicon-based tool
(TextBlob) and an LLM-based sentiment analysis method.
We subsequently assess the alignment between these au-
tomated sentiment scores and the sentiment perceptions
participants reported in post-interaction surveys.

B. Experiment design and evaluation metrics

We used the TextBlob package (version 0.19.0) in
Python. For the LLM-based sentiment analysis, we employed
gpt-4o-mini using a zero-shot prompt, as shown below.

Both sentiment analysis methods were applied indepen-
dently to every SAV response within each participant’s
conversation. For instance, if Participant P01 completed
15 request-response exchanges with SAV1, both methods
produced 15 sentiment evaluations (each containing polar-
ity and subjectivity scores). Aggregate statistics (minimum,
maximum, mean, median, and mode) were then computed
from these evaluations to create representative sentiment
measures for each participant–SAV interaction.

Zero-Shot LLM Sentiment-Analysis Prompt

You are an advanced Sentiment Analysis
Model for evaluating responses from a
Shared Autonomous Vehicle (SAV). For
each SAV response, analyze its explicit
and implied sentiment, and then output
two scores:

1) Polarity Score: A number from
−1 (extremely negative) to 1
(extremely positive).

2) Subjectivity Score: A number from
0 (highly objective) to 1 (highly
subjective).

Instructions:
Evaluate its overall emotional tone and
degree of personal bias.
Return only a valid JSON object
with the keys "Polarity Score" and
"Subjectivity Score" - no additional
text.
Example JSON structure: "Polarity
Score": <number>, "Subjectivity Score":
<number> .

The non-parametric Spearman’s rank correlation coeffi-
cient was employed to assess the relationship between the
aggregated sentiment metrics and the corresponding survey-
based sentiment ratings provided by participants [29]. Cor-
relation outcomes are summarized in Table I. The sentiment
features with the highest correlation from each method were
visualized against survey-based distributions in density plots
(Figs. 4a and 4b).

TABLE I: Spearman Correlation (r) Between Computed
Sentiment Features and Survey-Based Ratings. Significance
levels: *** p < 0.001, ** p < 0.01, * p < 0.05.

Method rpolarity rsubjectivity

llm min 0.199** 0.010
llm mean 0.182* 0.237**
textblob mean 0.089 0.032
textblob min 0.089 0.006
llm median 0.075 0.217**
textblob median 0.060 -0.056
textblob max 0.021 0.076
textblob mode 0.002 0.163*
llm mode -0.001 0.131
llm max -0.089 0.145*

C. Findings and Implications
Our results indicate that the LLM-based minimum polarity

measure (llm min) achieved the strongest correlation with
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Fig. 4: Raincloud plots comparing survey scores to the
highest-correlating sentiment features (among min, max,
mean, median, mode) from LLM and TextBlob. Each com-
bines density, boxplot, and jittered points, with Spearman
p-values annotated. Kernel density estimates were computed
using Scott’s rule for bandwidth selection.

users’ self-reported polarity (r = 0.199, p = 0.005) (Table I).
This result is visually reinforced by the density plot in
Fig. 4a, which shows that the LLM polarity distribution
more closely matches the survey-based distribution than
TextBlob’s distribution. Similarly, for subjectivity, the LLM-
derived mean score (llm mean) had the highest correlation
with survey-based subjectivity ratings (r = 0.237, p =
0.001) (Table I), outperforming TextBlob’s best-performing
measure (textblob mode, r = 0.163, p = 0.021). In both
sentiment dimensions, the LLM-based method consistently
outperformed TextBlob at statistically significant levels p <
0.05.

Despite modest correlation magnitudes (r ≈ 0.2), these
results offer several meaningful insights:

1) Holistic user evaluation: Users appear to rate senti-
ment based on the overall conversational experience,
encompassing factors beyond individual responses.
Modest correlation values imply that text-only sen-
timent metrics alone are insufficient for capturing
the complete user experience, which likely includes
context, multimodal cues, and interpersonal interaction
nuances.

2) Sensitivity to extreme sentiment: The prominence of
the minimum polarity score indicates users are likely
affected by the most negative (“worst-case”) exchanges
during the interactions.

3) LLM efficacy: Even with a simple zero-shot prompt,
the LLM sentiment method significantly outperformed
TextBlob, demonstrating strong potential for conversa-
tional sentiment analysis.

These findings underscore the potential of LLM-based sen-

timent analysis as a powerful and efficient tool for evaluating
conversational interactions. However, the modest correlation
between LLM-derived sentiment scores and participants’
self-reported ratings also reveals its current limitations. Sur-
prisingly, the LLM-based tool did not accurately reflect
users’ perceived sentiment toward SAV responses. Two pos-
sible explanations emerge: First, as previously discussed,
participants’ self-ratings may have reflected their aggregate
experience over the entire interaction, particularly influenced
by notably negative exchanges such as the refusal of a
request, rather than the sentiment of isolated SAV responses.
Participants may disproportionately emphasize negative ex-
periences or interactions that fail their expectations, a phe-
nomenon in social psychology whereby negative experiences
have a stronger impact on overall evaluations than equivalent
positive ones [30], [31]. Second, LLMs may still lack the
capacity to fully capture the nuanced sentiment embedded
in complex, real-world dialogues. These limitations point
to promising directions for future research, including the
integration of richer contextual and multimodal cues, such
as dialogue history, speech prosody, and facial expressions
– to improve the accuracy and depth of sentiment modeling
in human–SAV interactions.

The identified importance of sentiment polarity offers
actionable insights for SAV interface designers. As demon-
strated in Case Study 1, SAV response polarity plays an
important role in influencing perceived service quality. This
suggests that LLM-powered sentiment analysis tools could
be effectively integrated into autonomous vehicle systems to
enable real-time sentiment monitoring. When signs of user
dissatisfaction or confusion are detected, the system could
proactively respond to negative sentiment dips by deploying
adaptive strategies to maintain a positive and stable user
experience. These targeted design strategies, grounded in
sentiment polarity insights, offer a promising pathway toward
emotionally responsive and user-centered SAV interfaces.

V. CONCLUSIONS

This paper introduced an open-source human–SAV in-
teractions dataset. The dataset features diverse prompting
strategies designed to elicit psychological ownership and
anthropomorphic engagement, and includes both structured
survey responses and rich conversational textual data. It of-
fers insights into key user perceptions such as psychological
ownership, anthropomorphism, quality of service, disclosure
tendency, perceived enjoyment, behavioral intention, and
sentiment.

We demonstrated the utility of this dataset through two
benchmark case studies. In Case Study 1, we applied Ran-
dom Forest modeling to the survey data to examine item-
level predictors of SAV acceptance, revealing how different
conversational strategies influence user experience. In Case
Study 2, we analyzed the conversational data using both a
LLM-based sentiment analysis tool and TextBlob, comparing
their alignment with user-reported sentiment ratings.

Several promising directions emerge for future work. First,
this screen-based prototype could be replicated in realistic



driving environments to capture richer interaction cues. Sec-
ond, future studies should recruit more diverse participants
to improve generalization. Third, benchmarking additional
LLM architectures and advanced sentiment analysis methods
could address potential model biases and improve prediction
accuracy. Lastly, randomizing or removing example com-
mands could encourage more realistic and spontaneous user
interactions. These extensions will further clarify sentiment’s
role in shaping user experience to inform SAV design.

We invite researchers to further explore this dataset in the
context of human–SAV interaction. Future studies could, for
example, investigate the predictive power of conversational
text in estimating perceived quality of service, or develop
more advanced prompting techniques to enhance the perfor-
mance of LLM-based sentiment analysis, building upon the
findings of Case Study 2.
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