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Abstract— In this work, feedback regulation is added to a
system that otherwise consists of a large, high-density network
of parked vehicles. When awoken by an administrative centre,
this network proceeds to search for moving, missing entities
of interest using RFID-based techniques. RIFD readers and
antennae are placed within the vehicles, while RFID passive
tags are carried on the entity of interest via some means, e.g.,
a wrist band. Specifically, we seek to regulate the number
and geographical distribution of parked vehicles that are
“Switched On”, and thus actively searching for the moving
entity of interest. In doing so, we seek to conserve vehicular
energy consumption while, at the same time, maintain good
geographical coverage of the city such that the moving entity of
interest is likely to be located within an acceptable time frame.
Which vehicles are “Switched On” at any point in time is a
matter determined periodically through the use of stochastic
techniques. The regulated system is demonstrated through the
use case of a missing Alzheimer’s patient in inner-city Dublin,
Ireland.

I. INTRODUCTION

When a material object, pet, or loved ones go missing, it

can be a stressful experience for all involved. Considering

objects, pets and even people go missing every day, there

are methods and systems to facilitate the location of missing

entities. For example, we microchip our pets or equip them

with cellular-based GPS collars, and applications on our

computers allow us to track missing or stolen smartphones.

Medical jewellery and community support networks exist to

aid people with needs who wander, including Alzheimer’s

patients [1]. Meanwhile, general advances in information and

communication technology, coupled with the emergence of

the Internet of Things (IoT), means that these methods in-

creasingly allow for automation of the search and therewith,

improved response times.

For instance, in the context of IoT, the vehicles that we

drive are becoming connected to each other, to the infras-

tructure, as well as to the internet [2]. With expanding on-
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board sensor complements, computing, and communication

abilities, parked cars no longer need to be idle, to be of no

service to us during the extended periods when they are not

being driven. Recently [3]–[5], the use of networks of parked

vehicles in dense urban areas has been suggested for the

detection and localisation of moving, missing entities using

RFID technology.

The RFID-based system, described in [3]–[5] and illus-

trated in Fig. 1, was envisioned as follows. Each participating

parked vehicle has an RFID reader and antenna on board, and

is able to communicate with an administrative centre. The

missing entity is presumed to be carrying an RFID passive

tag via some means, e.g., a wrist band. Passive RFID tags do

not require a local power source, beyond the field created by

the RFID reader, and thus need not contain batteries. When

an entity is missing, an alarm is raised with the administrative

centre. For example, the entity’s carer or owner places a

phone call with the police. Once the alarm has been raised,

the administrative centre prompts the RFID-based application

on board the parked vehicles participating in the service.

The RFID technology enables those vehicles to attempt to

locate the missing entity, and to inform the administrative

centre when the missing entity is found, i.e., when the RFID

equipment on board a parked vehicle detects and processes

the presence of the unique RFID passive tag carried by the

missing entity. The information sent to the administrative

centre might include a time stamp, a GPS location of the

parked vehicle, and the unique RFID passive tag ID carried

by the missing entity that was detected by the equipment on

board the parked vehicle. Once detected, the administrative

centre is then able to invoke a procedure aimed at making

contact with the missing entity. For example, police are able

Fig. 1. RFID-based system illustration. (Some sub-images obtained from
Openclipart [6], [7].)



to go to the location at which the entity was detected in

order to refine the localisation and determine whether the

entity needs assistance, and if required, aid the entity on its

way home. See [3]–[5] for further details.

The work presented in [5] was largely simulation-based.

The system was demonstrated through a use case scenario of

a missing Alzheimer’s patient in inner-city Dublin, Ireland.

System parameters were varied, including: (i) the percentage

of parking spaces on the Dublin map that were inhabited

by vehicles participating in the service; (ii) the polling rate

of the RFID equipment on board the participating parked

vehicles; and (iii) the RFID equipment’s detection range.

Results were presented from thousands of simulations and

consisted of: (a) average times that it took for the network

of participating parked vehicles to detect the moving pedes-

trian; (b) population standard deviations from these average

detection times; and (c) the number of times that the system

failed to detect the pedestrian within a thirty-minute time

frame. An interesting (albeit expected) observation that the

results revealed was one of redundancy, in that the average

detection times, and particularly the “failed to detect” to-

tals, followed curves resembling the exponential. That is,

the average detection times and “failed to detect” results

remained relatively constant until a “threshold” participation

percentage was reached. When numbers of parking spaces

inhabited by searching vehicles fell below this threshold,

detection times, and especially the “failed to detect” totals,

increased sharply.

Clearly, a key question is: How can we distribute the

searching agents to quickly locate the moving, missing entity,

while also reducing redundancy in the system? There are a

number of ways in which this problem can be approached,

but one should keep in mind that the best search strategy can

be formulated as the restless bandit problem, whose approx-

imation to any non-trivial factor is complete for polynomial-

space Turing machines [8], i.e., provably intractable. We

hence propose to focus on fairness among participating

vehicles in terms of energy consumption.

In this paper, we choose to put a feedback loop around our

urban centre with the aim of regulating the number of cars

looking for a missing, moving entity efficiently. Consider

the following notion: the administrative centre broadcasts

a signal to all vehicles capable of participating in our

service. Then, each vehicle sends out a “ping” to determine

how many neighbours they have that are also capable of

participating. Probabilistic models of each vehicle switching

on or off their RFID readers are associated with the numbers

of neighbours. The agent uses the broadcast signal from the

administration centre, together with the relevant probability

model deduced by the number of his or her neighbours, to

“flip a coin” and determine whether to “Switch On” their

RFID reader over the next time interval. This process is

repeated every time interval. In the next section, we provide

some control-theoretic background for this approach. Then,

we formalise the problem and present our algorithms. In

Section V, we demonstrate the feedback regulation in action

by revisiting the use case of a missing Alzheimer’s patient in

inner-city Dublin. Finally, conclusions and future work are

presented in Section VI.

II. RELATED WORK

In this section, we explore related work on the interface

of smart cities and control theory, which elucidates main

mathematical features of the problem. Most of the theory

discussed in this section is presented in [9], [10], who

have introduced an abstract framework, blending practical

aspects of intelligent transportation systems, smart cities, and

techniques from classical control theory.

Let us consider a resource allocation problem in dis-

crete time. In particular, consider the closed-loop system

as depicted in Fig. 2, which comprises a (typically large)

number of agents, a controller, and a filter. The controller,

C, broadcasts a signal π(k) at time k ∈ N; the N ∈ N agents

S1, . . . ,SN amend their use of a shared resource in response.

The use xi(k) of the resource by agent i at time k is modelled

as a random variable, as there is an inherent randomness in

the reaction of each agent to the broadcast signal. The main

design task is to regulate the aggregate resource utilisation

y(k) =

N∑

i=1

xi(k), (1)

which is also a random variable. In this setting, the controller

usually does not have access to either xi or y, but only to

an estimate ŷ of y, which is the output of a filter F .

In addition to achieving regulation, the controller should

also ensure that the agents have a sense of fairness and

predictability. In control-theoretic terms, this can be cast as

a particular flavour of ergodicity of the closed-loop system

dynamics, known as the existence of a unique invariant

measure [9], [10]. This completely removes effects of initial

conditions on the long run.

The behaviour of the parked cars can be modelled in a

number of ways. For simplicity, let us consider a model,

where the state xi(k) of agent i at time k is in the set {0, 1},
as these variables model whether agent i allows for the search

(xi(k) = 1) or not (xi(k) = 0). We also assume that both

the controller C : e 7→ π and the filter F : y 7→ ŷ are linear

and time-invariant dynamic systems. In particular, we shall

explore, in the examples, the simple controller model given

Fig. 2. A feedback model employed.



by the difference equation

π(k) = βπ(k − 1) + κ [e(k)− αe(k − 1)] , (2)

for all k ∈ N, in which α, β, κ ∈ R. This model includes,

as particular cases, classical lead, lag and PI controller

structures [11], [12]. A simple model that can be considered

for the linear filter is the moving-average scheme

ŷ(k) =
y(k) + y(k − 1) + · · ·+ y(k −m)

m+ 1
, (3)

for some m ∈ N.

Let us now describe the random behaviour presented by

the agents considered in this paper. We assume that, at each

time instant k, agent i has a probability pi1 of being on and

a probability pi0 of being off at the following time instant.

Both probabilities depend on the broadcast control signal π;

that is,

P(xi(k + 1) = 1) = pi1 (π(k)) (4)

and, thus,

P(xi(k + 1) = 0) = pi0 (π(k)) = 1− pi1 (π(k)) , (5)

since both events are complementary. These probability

functions must satisfy some assumptions, as we shall see

in the sequel. One of these such assumptions is that pi1 and

pi0 are bounded away from zero (and one), for all i and

all π. The lack of this assumption can yield non-ergodic

stochastic processes, since some agents may monopolise

allocated resources. We are now able to state the following

result, which is central for the theoretical framework we are

considering.

Theorem 1 ([9]): Consider the feedback system depicted

in Fig. 2, for some given finite-dimensional linear systems

C and F . Assume that each agent i ∈ {1, . . . , N} has state

xi(k) governed by the following affine stochastic difference

equation:

xi(k + 1) = wij (xi(k)) , (6)

where the affine mapping wij is chosen at each step of

time according to a Dini-continuous probability function

pij(xi(k), π(k)), out of wij(xi) := Aixi + bij , where Ai is

a Schur matrix and for all i, π(k),
∑

j pij(xi(k), π(k)) = 1.

In addition, suppose that there exist scalars δi > 0 such that

pij(xi, π) ≥ δi > 0; that is, the probabilities are bounded

away from zero. Then, for every stable linear controller C
and every stable linear filter F , the feedback loop converges

in distribution to a unique invariant measure.

Note that this theorem addresses a more general dynamic

model for the agents than the one we consider here. Indeed,

for our case, we can take Ai = 0 and define bi0 = 0 and

bi1 = 1 for all i. Note also that, from this result, it follows

that our goal is to devise a stable, stabilising controller for

the closed-loop system depicted in Fig. 2. This, together with

stable filter dynamics, ensures ergodicity and, thus, fairness.

Some final remarks on this theorem are in order. First,

Dini’s condition on the probabilities may, obviously, be

replaced by simpler, more conservative assumptions, such as

Lipschitz or Hölder conditions [13]. Second, as we discussed

previously, the requirement pij(xi, π) ≥ δi > 0 in the

theorem statement is necessary for ergodicity.

III. PROBLEM STATEMENT

As stated before, the main problem to be solved in this

paper is the following:

Regulate the number of cars looking for a missing,

moving entity in an efficient way.

By efficiency, we mean that a solution to this problem

must:

• Be energy-efficient compared to existent solutions that

turn all cars on while the search is being conducted;

• Be coverage-efficient, i.e., the solution should encour-

age cars to spread through the city and should also

orchestrate them to ensure that the city as a whole has

a good coverage.

Our solution is embedded in the feedback theory for smart

cities framework presented in the previous section and, as we

shall see in the simulations, achieves both efficiency goals.

In our solution, each parked car is assumed to be eligible for

turning on a search sensor; therefore each car is an agent in

our framework.

The controller regulates the number of simultaneously on

cars around a pre-specified number r using the broadcast

signal π, which affects the agents behaviour towards turning

on or off. Broadly speaking, if the error signal e = r − ŷ is

large, then we expect a large value of π; their probabilities

of turning on must be tuned so that large values of π induce

more cars to turn on. The contrary effect should hold if e =
r − ŷ gets negative; that is, π should get negative and this

should induce more cars to turn off.

The response of agent i to the broadcast signal π, namely

its probabilities pi1 and pi0, also plays a key role in the

design. In addition to their explicit dependence on π, as

discussed previously, these probabilities also depend on each

agent’s surroundings. Given that in our application, agent i

represents a parked car whose probability of turning sensors

on for the next time step is pi1, this probability must clearly

depend on the number of neighbouring vehicles. Indeed,

clusters of cars can cooperate and take turns to cover one

area whereas a sole car on a street must be almost always

on. Hence, without any loss of generality, we consider three

kinds of responses to the broadcast signal π, depending on

whether a car has few (ff ), some/medium (fs), or many

(fm) neighbours, as depicted in Fig. 3. Remember that these

probabilities must satisfy the conditions of Theorem 1.

IV. AN ALGORITHM AND ITS IMPLEMENTATION

We are now able to present the main algorithm devised in

this paper in Algorithm 1, and to showcase how it searches

for missing entities.

To demonstrate the performance of our algorithm, we

employed Simulation of Urban MObility (SUMO) Version

0.31.0. SUMO [14] is an open-source, microscopic traffic

simulation package primarily being developed at the Institute



Fig. 3. Logistic functions used for probability models.

Algorithm 1: Main Algorithm

Data: Number of agents N ; time step h; search time

frame T ; probability behaviours ff , fs and

fm; controller C and filter F .

Result: Missing entity location or fail alert.

Initialise k ← 0; π(0)← 0; xi(0)← 0; ŷ(0)← 0;

for each car i do

Determine the number of neighbouring cars;

Decide whether Ni corresponds to few, some or

many neighbours;

Set pi1 as the corresponding probability

behaviour;

end

while k · h ≤ T do

for each car i do

if xi(k) = 1 then
Scan for missing entity and return its

position if located;

end

‘Toss a coin’ and decide xi(k+ 1), according

to (4);

end

k ← k + 1;

Update ŷ(k), e(k), π(k);
end

The agents have failed to locate the entity; Return

an alert;

of Transportation Systems at the German Aerospace Centre

(DLR). SUMO is designed to handle large networks, and

comes with a “remote control” interface, TraCI (short for

Traffic Control Interface) [15], which allows one to adapt the

simulation and to control singular vehicles and pedestrians

on the fly. Our goal was to simulate a pedestrian walking

about in an urban scenario, and to regulate the number of

parked vehicles actively searching for the pedestrian in an

energy- and coverage-efficient manner using our algorithm.

A. A Setup of the Simulations

For our urban map, we considered the road, pedestrian

sidewalk, and footpath networks in the region covered by

the Dublin Parking Yellow Zone, in Dublin, Ireland [16].

See also Fig. 4. The Dublin Parking Yellow Zone is located

in the centre of Dublin, and thus represents an area of very

high demand for parking spaces. For our complete vehicle

parking space set, we considered all of the on-street parking

administered by Dublin’s Pay-and-Display machines in the

Dublin Parking Yellow Zone, as well as all of the public

disabled parking spaces within this area.

To generate on the fly random walks for our pedestrian,

we utilised the python script containing an algorithm that we

had designed in [5]. That is, for each simulation, initially,

the person begins on a random edge. The algorithm then

continues by creating a list of neighbouring “next” edges,

with respect to the current edge that the person is on, and

randomly picks one of these “next” edges to be the next

link on the person’s route. For simplicity, we disallowed

the person from performing U-turns, and set a maximum

walking speed for the person at 1.25m/s. We used SUMO’s

nonInteracting pedestrian model [17] as the model for how

the person otherwise interacted with our map.

In regard to the vehicle parking spaces, as we did in [5], we

utilised Google Maps’ satellite imagery to visually locate the

approximate locations of all of the on-street parking spaces

administered by Dublin’s Pay-and-Display machines in the

Dublin Parking Yellow Zone, as well as all of the public

disabled parking spaces within this region. In total, 8,736

parking spaces were mapped from the Google Maps’ satellite

imagery onto our SUMO network. We represented all of

these parking spaces as Points of Interest on our SUMO

network. We specified the dimensions of each parking space

as 5m × 2.5m for simplicity, using [18] as a guide on

recommended parking space size, and otherwise used the

satellite imagery to aid us in determining whether each

parking space was to be placed in parallel or perpendicular

to the curb.

Another parameter in our experiment was the proportion

of parking spaces that would have cars parked in them that

Fig. 4. Dublin’s Yellow Zone. (Imported for use in SUMO from Open-
StreetMap.)



were capable of participating in our service. We elected to

simulate a test case scenario where each of the 8,736 parking

spaces had a 50% chance of being inhabited by a vehicle

capable of participating in our service. At the beginning

of each simulation, a “weighted coin’ was flipped for each

of the 8,736 parking spaces. The result of this “coin flip”

was compared to the above desired percentage value, to

determine whether that parking space would be inhabited

by a parked vehicle capable participating in the service

or not, over that particular simulation. Parking assignments

then remained constant for the duration of a simulation,

and parked, participating vehicles were “Switched On” or

“Switched Off” according to Algorithm 1. At the beginning

of each simulation, no participating vehicles were “Switched

On”. We chose our target number r of “Switched On”

vehicles to be 2,000.

For our probability models, we employed the use of

logistic functions which are illustrated in Fig. 3. We placed

a circle with a radius of twenty metres around each parked

vehicle capable of participating in our service, and let the

number of other parked vehicles (capable of participating

in our service, and) residing within this circle, equate to

the number of neighbours that the vehicle at the centre

of the circle had. For simplicity, we set m = 0 for our

filter described by (3); and we let α = −4.01, β = 0.99
and κ = 0.1 in (2). We set each vehicle’s RFID polling

rate (i.e. the frequency at which a car’s RFID system is

sampling at when the vehicle is “Switched On”) as “Always

On”, meaning that once “Switched On”, a vehicle is always

polling as opposed to doing periodic, timed reads. We set

a circular RFID field around each car with a radius of

six metres. Moreover, we assumed that once a pedestrian

entered this field, and if the vehicle was “Switched On”,

then the pedestrian would be detected. In other words, in this

paper, we neglect some of the more complicated phenomena

typically associated with RFID, such as the effects of tag

placement, antenna orientation, cable length, reader settings,

and environmental factors such as the existence of water or

other radio waves [19].

For each simulation, then, our goal was to set the person

down on a random edge, and have them walk until either: (i)

they were detected by a parked vehicle that was “Switched

On” and thus actively searching at the same time as when

the pedestrian was passing by; or (ii) thirty minutes had

lapsed and no detection event had occurred. The beginning of

each simulation was intended to mimic the moment that the

service application on board any parked vehicles capable of

participating in our service was activated by an administrative

centre, e.g., just after an alert has been raised by a carer to

the police that a person in need and carrying a unique RFID

tag was missing in the area. We permitted thirty minutes to

lapse before a “fail-to-detect” event was recorded, keeping in

mind that quickly finding a missing and potentially stressed

person, and returning them to their home, for instance, is

ideal. All simulations had time-step updates of 1s, while our

control signals were sent only every 20s. For our test case

scenario, 100 simulations were performed, in total.

V. RESULTS

To gather some preliminary data, we first permitted a

single simulation to run for a full thirty minutes, i.e., with

no pedestrian placement yet. From this simulation, Fig. 5

demonstrates that regulation of the system, such that approx-

imately 2,000 parked vehicles were “Switched On” at any

point in time, was achieved quite rapidly. Fig. 6 illustrates

the evolution of the control signal π over time. Notice that π

could then be used in association with Fig. 3, along with the

known number of neighbours that a vehicle had, to determine

the probability of that vehicle being “Switched On” over the

next time step k·h. Similarly, Fig. 7 shows how the evolution

of the error signal e over time. Finally, Fig. 8 is a snapshot

of part of our SUMO network, illustrating the geographical

distribution of parked vehicles at the end of the simulation. In

the snapshot, white circles represent empty parking spaces,

purple circles represent parked vehicles capable of partic-

ipating in the service, but currently “Switched Off”, and

blue circles represent currently “Switched On” vehicles. The

white circles remained white throughout the entire simulation

by design as we were considering static parking, but the

purple and blue circles changed colour depending on the

output of the control algorithm. Fig. 8 thus illustrates that

our setup achieved a good geographical spread of “Switched

On” vehicles.

Next, we performed our simulations proper, where a

pedestrian was inserted onto the map at the beginning of

each simulation, and the emulations ran until either: (i)

the pedestrian was detected by a parked vehicle that was

“Switched On” and thus actively searching at the same time

as when the pedestrian was passing by; or (ii) thirty minutes

had lapsed and no detection event had occurred. The data

collected from our experiment comprised of: (i) the average

time taken (in minutes) until detection of the missing entity

occurred (provided that the detection occurred within thirty

minutes from the beginning of an emulation, else a fail result

was recorded); (ii) the population standard deviation (in

minutes) from the average time taken until detection; and (iii)

the total number of times that fail results were recorded over

Fig. 5. Regulating to have 2,000 “Switched On” vehicles at any point in
time.



Fig. 6. The control signal, π, versus time.

Fig. 7. The error signal, e, versus time.

the entirety of the experiment. To reiterate, 100 simulations

in total were conducted over the course of our experiment.

The results were as follows: (a) Average Detection Time =
6.08 minutes; (b) Pop. Standard Deviation = 6.65 minutes;

and (c) Failed to Detect = 7 times out of 100 simulations. In

other words, the pedestrian was not detected, within a thirty

minute time frame, 7% of the time. For the other 93 cases,

the pedestrian was detected, on average, in approximately

six minutes.

VI. CONCLUSIONS AND FUTURE WORK

We envisage a number of ways forward in regard to im-

proving our experimental setup, including performing more

simulations, and testing under different and more realistic

parameters. Theoretically, we would like to consider dynamic

parking, which would mean examining time-varying prob-

ability models. We are also interested in utilising Markov

models to introduce a notion of mode-dependent probability,

i.e., such that “switching on” over the next time step, k ·h, is

dependent on whether a vehicle is currently “Switched On”

or not.
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[15] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer and J-
P. Hubaux, “TraCI: an interface for coupling road traffic and network
simulators,” in Proc. of the 11th Communications and Networking
Simulation Symposium, Ottawa, Canada, 2008, pp. 155-163.

[16] Dublin Street Parking Services, Costs & Zones. Accessed: Sep. 4,
2018. [Online]. Available: https://dsps.ie/costs-and-zones

[17] Simulation of Urban MObility – Wiki, Simula-
tion/Pedestrians. Accessed: Sep. 4, 2018. [Online]. Available:
http://sumo.dlr.de/wiki/Simulation/Pedestrians#Model nonInteraction

[18] Irish Parking Association, Frequently Asked Questions. Accessed:
Sep. 4, 2018. [Online]. Available: http://www.parkingireland.ie/car-
parking/frequently-asked-questions

[19] S. Armstrong, 6 Factors That Affect RFID Read Range, RFID
Insider, Jul. 2013. Accessed: Sep. 4, 2018. [Online]. Available:
http://blog.atlasrfidstore.com/improve-rfid-read-range


