
Consensus with State Obfuscation: an Application to Speed Advisory

Systems

Wynita Griggs, Giovanni Russo and Robert Shorten

Abstract— In this paper, we present a new speed advisory

system (SAS). The system provides indications to drivers which,

if followed, guide the network of vehicles towards a common

speed. The SAS we present is distributed and one of its key

features is that the vehicles are guided towards the common

speed by receiving obfuscated information. Essentially, this

means that the desired network behaviour is achieved and, at

the same time, there is no vehicle in the network that obtains

clear knowledge of the state of any other vehicle. This results

in a privacy-preserving feature which is particularly useful in

smart cities applications, where drivers might not be willing to

share their transient state with others.

I. INTRODUCTION

Excessive or inappropriate speed plays a significant role in

serious road accidents [1], thus motivating, over the years, the

development of several Intelligent Speed Adaptation (ISA)

systems. The original goal of such systems was to promote

safe driving by alerting drivers when road speed limits were

exceeded [2]. Since their first conceptualisation, however,

ISA systems have considerably evolved into smarter systems,

in an attempt to offer additional benefits to drivers and the

surrounding environment. A remarkable example is given by

speed advisory systems (SASs). The goal of such systems

is to recommend a suggested speed to drivers, and they

have proven useful in reducing general road traffic chaos and

preventing travelling delays [3], [4]. Additional benefits of

SASs include, but are not limited to: (i) ensuring that vehicles

travel at safe speeds and at safe distances from vehicles

ahead of them [5]; (ii) maintaining, as much as possible, the

free flow of traffic, navigating optimally through bottlenecks

when they occur, thus increasing overall throughput on roads;

and (iii) helping to reduce factors such as pollution emissions

and fuel consumption [3], [6].

The key goal of this paper is to propose a new archi-

tecture for a SAS with the objective of guiding a set of

moving vehicles towards the same speed while driving in

a common area. In contrast to previous algorithms, which

strive to achieve consensus on a common driving speed

via algorithmic innovation (see, for example, [7], [8] and

the references therein), our work explores the benefits that

can be achieved by allowing consensus protocols to evolve

over multiple parallel network topologies. As with other

This work was partially supported by Science Foundation Ireland grant
11/PI/1177.

W. Griggs and R. Shorten are with University College Dublin,
School of Electrical, Electronic and Communications Engineering,
Belfield, Dublin 4, Ireland. Emails: wynita.griggs@ucd.ie,
robert.shorten@ucd.ie

G. Russo and R. Shorten are with IBM Research Ireland, Optimisation
and Control Group, Dublin, Ireland. Email: grusso@ie.ibm.com

consensus algorithms, our algorithm provides signals to the

driver and, if such indications are followed, then all vehicles

will achieve a common speed. However, by using a parallel

architecture, we shall see that consensus can be achieved

by exchanging noisy (obfuscated) information, which is

important when privacy is a consideration.

In our work, same speed driving is achieved by each ve-

hicle sending its speed to a base station that controls a given

geographical area, which then constructs a recommended

input (i.e. an acceleration value) for all of the vehicles

within this area. The recommended input is then sent to the

vehicles and elaborated on, onboard the vehicles, to achieve

an advised speed that is subsequently shown to the drivers.

As we will see, the inputs sent to the cars are computed from

a multi-layered network that blends together information

regarding vehicles’ speeds and some white noise. Thus, a

single car in the network does not see the exact speed of its

neighbours, but rather, it sees a signal that is obfuscated by

noise.

The algorithm we propose relies on a solid theoretical

background. In the appendix, we give a new sufficient con-

dition for the consensus, [9]–[11], in multi-layer networks,

[12], modelled by a set of continuous-time stochastic differ-

ential equations, [13]. Interestingly, with our result, we show

that, if properly designed, noise can serve as a distributed

control input and we show that it is indeed fundamental to

algorithm convergence.

II. PROBLEM STATEMENT

In this paper, we will design a speed advisory algorithm for

a network of N interconnected vehicles driving in the same

area. The area might be the same stretch of a road (e.g.

a highway), or a mini-city (e.g. a university campus). The

goal of the algorithm is to allow vehicles to collaboratively

converge towards an agreed speed.

As shown in Fig. 1, the key components of the algorithm

are: (i) a base station algorithm, that continuously takes as

input the speeds of the vehicles within the controlled area,

say vi, i = 1, . . . , N , and returns an acceleration to each

vehicle, say ui(t), i = 1, . . . , N ; and (ii) an in-car system

algorithm, which sends a vehicle’s current speed, vi, to the

base station. This algorithm also integrates the acceleration

ui(t) provided by the base station algorithm and displays

this suggested speed to the driver.

III. THE PROPOSED ARCHITECTURE

In this section, we provide a description of the consensus

architecture and outline its key steps. Readers are referred to

Fig. 1. Schematic diagram illustrating the set-up for the algorithm presented
in this paper. Each vehicle communicates its speed to the road infrastructure
(i.e. the base station) and receives, in return, a recommended speed.

the appendix for a theoretical result on network convergence.

A. Overall architecture description

The key idea for the algorithm is to suggest a speed to

each driver within a given area controlled by a base station.

Essentially, the base station receives speed data from each

vehicle and constructs a recommendation (i.e. recommended

input) by implementing a multi-layer network [12], where

noise is injected into one of these layers. (Specifically, as

outlined in Fig. 2, the multi-layer network consists of two

layers in total.) The layers compute an acceleration for each

vehicle. The algorithm uses the values of the vehicles’ speeds

to compute such, as outlined below:

• a first layer (i.e. the bottom layer in Fig. 2) that combines

the speed of the last vehicle entering the area with the speed

of the one that entered immediately before. This yields to

the computation of a clean input for the vehicles, i.e. uc
i ,

i = 1, . . . , N . Specifically, such a term is computed as

uc
i (t) := vi+1(t) + vi−1(t)− 2vi(t), i = 2, . . . , N − 1;

uc
1(t) := v2(t)− v1(t);

uc
N (t) := vN−1(t)− vN (t);

• a second layer (i.e. the top layer in Fig. 2) that combines

all the vehicle speeds and corrupts this aggregated informa-

tion with some white noise, say w(t) (i.e. noise is injected

in this layer). The result of this computation is a noisy input

for the vehicles, i.e. un
i , i = 1, . . . , N . Namely, such a term

is computed as

un
i (t) := w(t)

N
∑

j=1

(vj − vi);

• the two components are then summed up and the

recommended input that is returned to the i-th vehicle in

the network is

ui(t) := uc
i(t) + un

i (t).

Fig. 2. Schematic diagram illustrating how the control input to the network
of vehicles is computed.

Physically, the input ui(t) is an acceleration. This acceler-

ation value is received by an in-car system algorithm, which

then shows to the driver the suggested speed.

We also remark here that the input received by each in-car

system is an aggregate of information from vehicles within

the controlled area. It is important to note that the vehicles

do not know to whom they have been connected and that

the signal received by each vehicle is also corrupted by the

white noise injected at the base station. This implies that

the i-th in-car system does not see the exact speed of its

neighbouring vehicles and that, in this sense, the algorithm

is privacy-preserving. In the appendix, we will give a result

showing that the noise injected by the base station is crucial

for the convergence of the algorithm.

B. Pseudo-code for the base station algorithm

The key steps of the base station algorithm are shown

in Algorithm 1. Essentially, such an algorithm continuously

checks for vehicles entering/exiting into/from the area con-

trolled by the base station. This is done by creating a list that

is updated: (i) every time a new vehicle entering the area is

detected; (ii) whenever a vehicle exits from the controlled

area. Once the list is updated, the algorithm gathers the

speeds of the vehicles within the list and implements the

two network layers of Section III-A. The control input, ui,

is then returned to the i-th vehicle.

C. Pseudo-code for the in-car system algorithm

The role of the in-car system is essentially that of facil-

itating the exchange of data with the base station and to

provide the recommended speed to the driver. Specifically,

as described in Algorithm 2, whenever a connection is

established, the vehicle speed is sent to the base station.

Analogously, whenever ui(t) is received, this is converted

to show the recommended speed to the driver.

Algorithm 1 Pseudo-code for the base station algorithm

function [u1, . . . , uN] = BASE-STATION([v1, . . . , vN])
Internal Variables:

List = list of vehicles within the controlled area
while True do

List update

if new vehicle within the controlled area then

append vehicle to List
else if vehicle exits from the controlled area then

remove vehicle from List
end if

Gather data

N ← size of List
for vehicles in List do

get speeds, vi
end for

Generate noise

w ← value from white noise
Implement the bottom and top network layers

uc
1 ← v2 − v1

uc
N ← vN−1 − vN

for i in [2, N − 1] do

uc
i ← vi−1 + vi+1 − 2vi

end for

for i in [1, N] do

un
i ← w ·

∑N

j=1
(vj − vi)

end for

Set output

for i in [1, N] do

ui = un
i + uc

i

end for

return [u1, . . . , uN]
end while

end function

IV. SIMULATIONS

Emulations of some test cases were performed to provide

preliminary testing and thus demonstrate the effectiveness

of the algorithms introduced above. First, we performed

a simplified analysis through Python 2.7.11 with the goal

of quickly assessing the convergence of the algorithms.

Specifically, a Python script was written which implemented

Algorithms 1 and 2. In such a script, the in-car algorithm

(one for each vehicle) receives an acceleration computed

by the base station algorithm and converts it to a speed.

In this first experiment, driver behaviour was neglected and

the number of vehicles considered in the simulation was

N = 10. All vehicles were released together at the beginning

of the simulation and each vehicle had a pre-set departure

speed (see Table I). The time step size used for the simulation

was 0.01s and the total simulation time was 120s. The noise,

w, injected by the base station algorithm was generated from

a Gaussian distribution with mean equal to 0 and standard

deviation equal to 0.5.

As shown in Fig. 3, the algorithms guided the speeds

of the vehicles towards a common value. This confirmed

the theoretical predictions presented in the appendix. Once

the results obtained from the simplified Python script were

assessed, we performed some more realistic simulations by

means of introducing microscopic traffic simulation software,

Algorithm 2 Pseudo-code for the in-car system (car i)

function vi = IN-CAR(ui)
Internal Variables:

is-communicating: equal to 1 if communication is established
with a base station, 0 otherwise

while True do

update is-communicating
if is-communicating == 1 then

receive ui from base-station
show recommended speed
return vi (send to base station)

else

show: no connection to base station
return Empty vi

end if

end while

end function

TABLE I

SCENARIO 1: PRESET DEPARTURE SPEEDS

Passenger Vehicle No. 1 2 3 4 5

Depart Speed [m/s] 26 20 15 16 18

Passenger Vehicle No. 6 7 8 9 10

Depart Speed [m/s] 22 17 24 18 21

which allowed for the inclusion of some vehicular dynamics

and driver behaviour. These experiments are described next.

Fig. 3. Individual vehicles’ speeds versus time.

A. SUMO

In order to add some more realism to the simulations,

some vehicular dynamics and basic driver behaviours were

incorporated via the use of the open source microscopic

traffic simulation package SUMO [14]. SUMO is designed to

handle large road networks and is being primarily developed

at the Institute of Transportation Systems at the German

Aerospace Centre (DLR). The package comes with a “remote

control” interface, TraCI (short for Traffic Control Interface)

[15], that allows one to adapt the simulation and to control

singular vehicles on the fly. Two scenarios were identified.

Descriptions of the scenario setups and results are provided

next.

1) Scenario setups: A road to be used in all SUMO

emulations was defined in XML, together with a base station.

The road consisted of four lanes, the outermost lane being

reserved for emergency vehicles, buses and taxes only. A

maximum speed limit of 100 km/h was set on the road. The

road is shown in Fig. 4.

Fig. 4. Road design.

Two different scenarios were defined. In the first scenario

(i.e. Scenario 1), 10 vehicles with pre-set departure speeds

were released approximately every second from the starting

position on the road, and then no further traffic was released

while the simulation ran. The pre-set departure speeds of the

10 vehicles are listed in Table I. In the second scenario (i.e.

Scenario 2), vehicles had random departure speeds and were

randomly released during the simulation from the starting

position on the road. The probabilities for vehicles’ release

are listed in Table II. Additional attributes were also set

to characterise different types of vehicles (see Table III).1

The time step set for the simulations was 0.1s and the total

simulation time per simulation was 120s.

TABLE II

SCENARIO 2: RELEASE PROBABILITIES

Passenger Vehicle Bus Taxi

Probability of Release [per 0.1s] 0.1 0.01 0.01

TABLE III

SCENARIOS 1 AND 2: OTHER ATTRIBUTES

Passenger Vehicle Bus Taxi

Max. Speed [m/s] 70 50 60

Max. Acceleration [m/s2] 2.6 2.2 2.8

Max. Deceleration [m/s2] 4.5 4.0 4.6

speedFactor 1 1 1

speedDev 0.1 0.1 0.1

2) Algorithms and identifiers: Both Algorithm 1 and

Algorithm 2 were implemented via a Python script, which

interfaced with SUMO using TraCI. In order to better charac-

terise our algorithms, we simulated for both Scenario 1 and

Scenario 2, the case where the algorithms are active (i.e.

provide speeds to the drivers and such speeds are followed),

and the case where they are not implemented. Then, in order

to make a comparison between such two cases, we recorded

the following identifiers during the course of the simulations:

(i) individual vehicle speeds; (ii) total fuel consumption of

the network; and (iii) total particulate matter emissions.

1Attribute descriptions can be found in the user documentation on the
SUMO website [16].

3) SUMO simulation results: Figs. 5 and 6 show the

evolution of individual vehicle speeds over the course of the

simulation runtimes in regards to Scenario 1. Specifically,

Fig. 5 illustrates how the individual vehicles’ speeds evolved

in the case where the algorithms were not active, while Fig. 6

shows what occurred when the algorithms were active. Such

figures clearly show that the algorithms allowed the vehicles’

speeds to converge towards a common value. Note that this

does not happen if the control is not active.

Fig. 5. Scenario 1: individual vehicles’ speed evolutions without algo-
rithms.

Fig. 6. Scenario 1: individual vehicles’ speed evolutions with algorithms.

Analogously, Figs. 7 and 8 show the evolution of indi-

vidual vehicle speeds over the course of the simulations in

regards to Scenario 2. Fig. 7 demonstrates the progression of

vehicles’ speeds when the algorithms were not implemented,

while Fig. 8 illustrates what occurred when the algorithms

were applied. Again, the algorithms allowed the vehicles’

speeds to converge towards a common value.

Note that every time a car enters the simulation, the

vehicles automatically coordinate to achieve the common,

average speed. This is due to the fact that there is no leader.

We are currently developing a SAS with a leader, which will

be presented in future work [17]. This work is omitted here

due to page constraints.

Table IV compares total network fuel consumption and

total network particulate matter emissions in regards to each

of the previously described simulation runs. That is, the

fuel consumption and particulate matter emissions of each

Fig. 7. Scenario 2: individual vehicles’ speed evolutions without algo-
rithms.

Fig. 8. Scenario 2: individual vehicles’ speed evolutions with algorithms.

vehicle, at each time step, were summed to find the total

network values. The result was that the activation of the

algorithms reduced fuel consumption and particulate matter

emissions in both Scenarios 1 and 2.

TABLE IV

ALGORITHMS SUCCESS MEASURES

Identifier Fuel Consumption [ml] PMx [mg]

Scenario 1 (No Algorithms) 15206 3707

Scenario 1 (Algorithms) 9134 1801

Scenario 2 (No Algorithms) 16842 4449

Scenario 2 (Algorithms) 7191 2135

B. The next step

Our next step will be to implement our speed advisory

system in the hardware-in-the-loop platform described in

[18] (and seen also in https://www.youtube.com/

watch?v=tCX2GLn1pnM). The objective of the platform

is to merge large-scale simulation and proof-of-concept by

“embedding” a real, equipped vehicle, being driven by a real

driver, into SUMO. As such, emulations consisting of the real

vehicle and potentially thousands of simulated cars are able

to be run in realtime, and the driver of the real vehicle is

presented with an opportunity to experience first-hand what

it feels like to travel in a large-scale, connected scenario, and

to try out the new intelligent transportation technology that

is being developed. In this way, we may gauge further how

acceptable our speed advisory system is to real drivers.

V. CONCLUSIONS

In this paper, we presented a new SAS. The system is

distributed and its key feature is that it makes use of noise in

guiding the participating vehicles towards a common speed.

Besides guaranteeing convergence of the algorithm, noise

also corrupts the information seen by each of the vehicles.

The effect of this is that there is no vehicle within the system

knowing the exact speed of all the other vehicles. The results

of this paper open up new, exciting directions for future

work. Based on this work, the authors are currently working

towards: (i) the development of hardware-in-the-loop test-

beds to better validate our algorithms; (ii) the extension of

the algorithms to consider multiple base stations; and (iii)

the further development of the algorithms to drive all of the

vehicles to a desired speed while optimising some global

cost function.

REFERENCES

[1] Speed Statistics (Transport Accident Commission, Victoria State
Government, Australia). (Last accessed: 23rd March 2016). [Online].
Available: http://www.tac.vic.gov.au/road-safety/

statistics/summaries/speed-statistics

[2] S. Jamson, O. Carsten, K. Chorlton and M. Fowkes, Intelligent speed
adaptation literature review and scoping study, Technical Report ISA-
TfL D1, University of Leeds, MIRA Ltd. and Transport for London,
2006.

[3] S. Kundu, Flexible vehicle speed control algorithms for eco-driving,
in Proceedings of the 82nd IEEE Vehicular Technology Conference,
Boston, MA, USA, 2015.

[4] W. J. Schakel and B. van Arem, Improving traffic flow efficiency
by in-car advice on lane, speed, and headway, IEEE Transactions on
Intelligent Transportation Systems, vol. 15, no. 4, pp. 1597-1606, 2014.

[5] R. H. Ordóñez-Hurtado, W. M. Griggs, K. Massow and R. N. Shorten,
Intelligent speed advising based on cooperative traffic scenario deter-
mination, pp. 77-92, in: H. Waschl, I. Kolmanovsky, M. Steinbuch and
L. del Re (Eds.), Lecture Notes in Control and Information Sciences:
Optimization and Optimal Control in Automotive Systems, vol. 455,
Springer, 2014.

[6] M. Liu, R. H. Ordóñez-Hurtado, F. Wirth, Y. Gu, E. Crisostomi
and R. Shorten, A distributed and privacy-aware speed advisory
system for optimizing conventional and electric vehicle networks,
IEEE Transactions on Intelligent Transportation Systems, vol. 17, no.
5, pp. 1308-1318, 2016.

[7] E. Adell, A. Várhelyi, M. Alonso and J. Plaza, Developing hu-
man–machine interaction components for a driver assistance system
for safe speed and safe distance, IET Intelligent Transport Systems,
vol. 2, no. 1, pp. 1–14, 2008.

[8] R. Gallen, N. Hautière, A. Cord and S. Glaser, Supporting drivers in
keeping safe speed in adverse weather conditions by mitigating the
risk level, IEEE Transactions on Intelligent Transportation Systems,
vol. 14, no. 4, pp. 1558-1571, 2013.

[9] R. Olfati-Saber and R. Murray, Consensus problems in networks of
agents with switching topology and time-delays, IEEE Transactions
on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[10] M. di Bernardo, D. Liuzza and G. Russo, Contraction analysis for a
class of nondifferentiable systems with applications to stability and
network synchronization, SIAM Journal on Control and Optimization,
vol. 52, no. 5, pp. 3203–3227, 2014.

[11] G. Russo, M. di Bernardo and E. D. Sontag, Stability of networked
systems: a multi-scale approach using contraction, in Proceedings of
the 49th IEEE Conference on Decision and Control, Atlanta, Georgia,
USA, 2010, pp. 6559-6564.

[12] D. Burbano and M. di Bernardo, Multilayer proportional-integral
consensus of heterogeneous multi-agent systems, in Proceedings of
the 54th IEEE Conference on Decision and Control, Osaka, Japan,
2015, pp. 4854-4859.

[13] X. Mao, Stochastic Differential Equations and Applications, Wood-
head Publishing; 1997.

[14] D. Krajzewicz, J. Erdmann, M. Behrisch and L. Bieker, Recent devel-
opment and applications of SUMO – Simulation of Urban MObility,
International Journal On Advances in Systems and Measurements, vol.
5, no. 3-4, pp. 128-138, 2012.

[15] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer
and J.-P. Hubaux, TraCI: an interface for coupling road traffic and
network simulators, in Proceedings of the 11th Communications and
Networking Simulation Symposium, Ottawa, Canada, 2008, pp. 155-
163.

[16] SUMO (Simulation of Urban MObility). (Last accessed: 2nd March
2016). [Online]. Available: www.dlr.de/ts/sumo/en/

[17] W. Griggs, G. Russo and R. Shorten, Lead and leaderless consensus
with state obfuscation: an application to Speed Advisory Systems, in
preparation.

[18] W. M. Griggs, R. H. Ordóñez-Hurtado, E. Crisostomi, F. Häusler, K.
Massow and R. N. Shorten, A large-scale SUMO-based emulation
platform, IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 6, pp. 3050-3059, 2015.

[19] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag,
New York; 2001.

[20] A. F. Karr, Probability, Springer-Verlag, New York; 1993.

[21] V. K. Rohatgi, An introduction to Probability Theory and Mathemat-
ical Statistics, John Wiley & Sons; 1976.

APPENDIX

In this appendix, we provide a new result on the consensus

of networks modelled by stochastic differential equations

from which convergence of the SAS follows. For the sake

of brevity, the full proof is omitted and will be presented

elsewhere [17].

Notation

The Kronecker (or direct) product will be denoted by ⊗.

Let G = (V , E) be an undirected graph with V being the set

of nodes and E being the set of edges. We will denote by

Ni the set of neighbours of node i. Let N be the number

of nodes in the network. Then (see e.g. [19]) the Laplacian

matrix associated to the graph, L, is symmetric and we will

denote by λi, i = 1, . . . , N , its eigenvalues.

Mathematical tools

Consider an n-dimensional stochastic differential equation

of the form

dx = f(t, x)dt + g(t, x)db, (1)

where: (i) x ∈ R
n is the state variable; (ii) f : R+ × R

n →
R

n belongs to C2; (iii) g : R+ × R
n → R

n belongs to C;

(iv) b is a 1-dimensional Brownian motion. Throughout this

paper, we will assume that for any given initial condition,

(1) has a unique global solution; see e.g. [13]. We will also

assume that f(t, 0) = g(t, 0) = 0 and the solution x =
0 will be said to be the trivial solution of (1). Following

[20], [21], we say that a sequence of stochastic variables,

{V1, V2, . . .}, converges almost surely (a.s.) to the stochastic

variable V if P ({w : limn→+∞ Vn(w) = V (w)}) = 1. That

is, convergence happens with probability 1 (P = 1). We are

now ready to give the following definition; see [13].

Definition 1: The trivial solution of (1) is said to be

almost surely exponentially stable if, for all x ∈ R
n,

limt→+∞ sup 1
t
log (|x(t)|) < 0, a.s.

Let V (t, x) ∈ C1×2 (i.e. V (t, x) is twice differentiable in

x and differentiable in t) and let: (i) LV (t, x) = Vt(t, x) +
Vx(t, x)f(t, x) + 1

2 tr
{

g(t, x)TVxxg(t, x)(t, x)
}

;(ii) Vx =
[Vx1

, . . . , Vxn
]; (iii) Vxx be the n × n dimensional matrix

having as element ij Vxixj
(where Vxi

:= ∂V (t, x)/∂xi

and Vxixj
:= ∂2V (t, x)/∂xj∂xi). Then, the following result

from [13] holds.

Theorem 1: Assume that there exists a non-negative func-

tion V (t, x) ∈ C1×2 and constants p > 0, c1 >
0, c2 ∈ R, c3 ≥ 0, such that ∀x 6= 0 and

∀t ∈ R
+: (H1) c1 |x|

p ≤ V (t, x)p; (H2) LV (t, x) ≤
c2V (t, x); (H3) |Vx(t, x)g(t, x)|

2 ≥ c3V (t, x)2. Then:

limt→+∞ sup 1
t
log (|x(t)|) ≤ − c3−2c2

p
, a.s. In particular,

if c3 > 2c2, then the trivial solution of (1) is almost surely

exponentially stable.

A result on consensus of stochastic networks

Consider a stochastic differential equation of the form

dxi =



σ
∑

j∈Ni

(xj − xi)



 dt+ σ∗
∑

j∈N∗

i

(xj − xi) db, (2)

xi ∈ R, xi(t0) = xi,0, t ≥ 0, i = 1, . . . , N . Such an equation

corresponds to the dynamics of a network consisting of two

layers [12]. Note that the two layers might have different

topologies and that one of the layers is affected by noise

(we will refer to the noise-free layer as communication layer,

while the layer affected by noise will be termed as noise-

diffusion layer). Network (2) can be written in compact form:

dX = −σLXdt− σ∗L∗Xdb,

where X := [x1, . . . , xN]T , L is the Laplacian of the

communication layer and L∗ is the Laplacian of the noise-

diffusion layer. We will denote by λ∗
N the largest eigenvalue

of L∗, while λ∗
2 will its algebraic connectivity.

Definition 2: Let s̄ = 1
N

∑N

i=1 xi,0. We

say that (2) achieves stochastic consensus if

limt→+∞ sup 1
t
log (|xi(t)− s̄|) < 0, a.s., ∀i = 1, . . . , N .

Then, the following result holds.

Theorem 2: Assume that for network (2) the following

condition is satisfied: (σ∗)2
(

(λ∗
2)

2 −
(λ∗

N)2

2

)

> −σλ2.

Then, (2) achieves complete stochastic consensus.

Sketch of the proof. The proof is based on the use of Theorem

1. Specifically, the function V (e) = 1
2e

T e, with S(t) :=
1N ⊗ s̄ and e = X − S. Following Theorem 1, we need to

show that there exists c2 ∈ R, c3 ≥ 0, such that c3 > 2c2.

Estimate of LV (e). For this term, it is possible to show

that:

LV (e) ≤
(

2 (−σλ2) + (σ∗)2(λ∗
N)2

)

V (e).

Estimate of

∣

∣

∣
Ve(e)G̃(t, e)

∣

∣

∣

2

. For this term, it can be easily

shown that

∣

∣

∣
Ve(e)G̃(t, e)

∣

∣

∣

2

≥ 4(σ∗)2(λ∗
2)

2V (e)2.

We can then conclude the proof by noticing that, by

the hypotheses, 4(σ∗)2(λ∗
2)

2 > 2
(

2 (−σλ2) + (σ∗)2(λ∗
N)2

)

.

Therefore, by means of Theorem 1 we have that

limt→+∞ sup 1
t
log (|e(t)|) < 0, a.s., thus proving the result.

