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Abstract— Characterisations of “mixed” systems are pre-
sented in a discrete-time setting. First, a feedback staliiy result
based on the Nyquist stability theorem is presented. Second
an eigenvalue-based characterisation of “mixed” systemsdsed
on their state-space data is derived. The results are analogs
to previous results presented for the continuous-time case
and provide a foundation for further study concerning the
discretisation of “mixed” systems.

|I. INTRODUCTION

The passivity theorem [1], [2] is a well-established stabil

Building on the idea of finite frequency positive real-
ness, “mixed” systems were introduced in [14]-[17] as
systems that combine notions of passivity and small gain
type behaviour in a certain manner, eg: a “mixed” system
has small gain behaviours over frequency bands where
positivity is violated. “Mixed” systems were intended to
aid in the formalisation and extension of the well-known
engineering notion that keeping feedback-loop gain sntall a
high frequencies where passivity might be violated avoids
destabilisation of high frequency dynamics; see also [18],
[19]. The stability of large-scale interconnections of Sexdl”

ity result for engineering systems, used in a wide range %g/stems was considered in [17], and an eigenvalue-based

application areas such as circuit network theory [3], gign%haracterisation for ©
processing systems [4], mechanical networks [5] and roboti
[6], [7].- The result guarantees the stability of a feedbac
interconnection of two stable systems if, for instancehbot
of the systems are passive, and one of the systems
input strictly passive with finite gain [8]. Passivity has ary
energy-based interpretation: passive systems are sygtains
consume, but do not produce, energy (eg: [2]). Relate
to passivity include the notions of positivity [1] and stric

positive realness (SPRness) [2].

mixed” systems in continuous-timesw
Eresented in [16].

While the study of systems with finite frequency positive
realness (eg: “mixed” systems [16], [17]; see also [20]])21
H&s seen much progress over the past number of years, many
asic questions remain. For instance, engineers rarely wor

ith continuous-time systems exclusively. For simulation
E\{eroses, or for the purpose of control design, or in order
to implement a controller, at some stage a discrete-time
representation of the system must be considered. Thus, it

Problems can arise from using purely traditional passivity,g 'cyitical to establish whether discrete-time systemsiith

based techniques for real-world applications. For examplg,njamental properties of the continuous-time systems fro
unmodelled dynamics can destroy assumed or nominal Paggich they are derived. System discretisation has cugrentl

sivity over certain frequency bandwidths [9], [10]; and €€ hocome an issue of importance once again, and several

ing passivity criteria can conflict with system performanc%apers [22]-[27] have recently appeared on this topic, par-

requirements [11]. The concept of finite frequency pOSitiVﬁcuIarly in the switched systems community. The purpose
realness (ie: positive realness only over a certain frecqen

band) [12] or “restricted passivity’

these issues.
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of this paper is to lay the foundation for future studies

: , ' [13] thus provides eng cqnceming the discretisation of “mixed” systems by fully
neers with a tool for potentially dealing with a number o

characterising “mixed” systems in the discrete-time sgtti

In Section Il of the paper, “mixed” systems in discrete-time
are defined. In Section 1, a feedback stability result blase
on the Nyquist stability theorem is presented. An eigerealu
based characterisation of “mixed” systems based on their
state-space description is derived in Section IV. Direxgio
for future research are presented in Section V.

I[l. MATHEMATICAL PRELIMINARIES
Before presenting the main results of the paper, some
mathematical preliminaries are first established.

A. Notation

Let O[] and p(-) denote the real part of a complex
number and the spectral radius of a matrix, respectivelg. Th
conjugate of a complex number= rei?, wherer is the



magnitude ofz, 6 is the phase of and j? = —1, will be
denoted byz.

B. Definitions
The following definitions are required.

Definition 1: [28, Section 10.1.3] A discrete-time system

with proper, real-rational transfer function matéXz) is said
to be input-output stable if all of the poles @{z) lie inside
the unit circle on the complex plane.

Suppose thaf := wT, whereT denotes a fixed sampling
interval in seconds, and> denotes any signal frequency in

rad/s such thab € [—m, 1. Suppose that & a<b < m,
wherea andb are in radians.

o

Orad/s

Imaginary Axis

1 0.5 0 0.5 1 15
Real Axis

Definition 2: An input-output stable, discrete-time system

with square, proper, real-rational transfer function imatr

Fig. 1. Nyquist diagram of(s).

M(z) is said to be input and output strictly positive over

[—b,—aJU[a,b] if there exist real numbeiig| > 0 such that

—kM*(eO)M(e®) + M* (&) + M) -1l >0
for all 6 € [—b,—a] U[&;b).

A system is said to be input strictly positive over
[—b,—a]U[a,b] if Definition 2 is satisfied withk = 0; output

strictly positive over[—b,—a] U [a,b] if the definition is
satisfied withl = 0; and positive ovef—b,—a]U[a,b] if it
is satisfied withk =1 = 0.

Definition 3: For an input-output stable, discrete-time sys-

tem with proper, real-rational transfer function mathixz),
define the system gain ovérb,—aju([a b] as
g:=min{e e R, : —M*(eM(el?) + €2 >0
for all 8 € [—b,—a] U[&b]}.

The system is said to have a gain of less than one over

[-b,—aJula,b] if €<1.

Next, consider the zero-order hold discretisation method
described in [29, Chapter 13]; that is, for tmth-order,
continuous-time plant described by

X(t) = Acx(t) +Beu(t)
y(t) =Cx(t) + Du(t)
its discrete-time model is given by
X[(k+1)T] = Ax(KT) + Bu(kT)
Y(KT) = Cx(KT) 4+ Du(kT)

where
2T2 3T3
A::eAcT:I+AcT+T+ACT+...
_ AT? AT
B:= [IT+T+ 30 +...|Be

A “mixed” discrete-time system, analogous to the descriper B = AZl[eheT —1]B; = [¢T — I]A;1B; when A; is non-
tion of a “mixed” continuous-time system provided in [16],singular.

[17], is now defined.

Using theexpmfunction in MATLAB Version 7.13.0.564

Definition 4: An input-output stable, discrete-time system(R2011b) to compute=T for a sampling interval of = 0.2s
with square, proper, real-rational transfer function matr gives

M(z) is said to be “mixed” if, for eactd € [—m, 1], either
of the following hold:
(i) there existk| > 0 such that—kM*(e/®)M(el?) +
M*(el?) +M(el®) -1l >0; _ _
(i) there existse < 1 such that-M*(el®)M(el®) + 21 > 0.
The following example further illustrates Definition 4.
Example 1:Suppose that

-3 -2 2
AC_{ 1 o],BC_M,c_[o 15], D=-0.2

from which the transfer function

~ —0.2(?+3s—13)
M) = 1 D(s+2)

is obtained. The Nyquist diagram ofi(s) is illustrated in

AD2 _ [0.5219 —0.2968}

0.1484 Q9671 -
Then
A [0.5219 —0.296? B_ [0.29684
0.1484 09671’ 0.0328
and

m(z) = —0.22240.3471z— 0.06941
B 72 —1.48%+0.5488

The Nyquist diagram ofn(z) is shown in Fig. 2. From the
Nyquist diagram, it is clear that there exist§@= wyT such
that, over[—6y, 6], Property (i) of Definition 4 holds and,
over [—1T,—6p] and [0, 1], Property (ii) of the definition is
satisfied, noting thatl[m(el“T)] = 1[m*(el®T) + m(el®T))
and |m(el®T) |2 = m*(el“T)m(el®T). Hence, this discrete-

Fig. 1. From [17, Definition 3], this continuous-time systemtime model of the continuous-time system, obtained when

is classified as “mixed.”

T =0.2s, is “mixed.”



-0.838 rad/s ] 1.5

-0.757 rad/s
>

-0.952 rad/s

+15.7 rad/s O rad/s

Imaginary Axis
o

+3.14rad/s Orad/s

Imaginary Axis

1.01 rad/s 0.838 rad/s

-1 -05 0 ® 05 1 1.5
Real Axis

Fig. 2. Nyquist diagram ofm(z) with T = 0.2s. 0952 rads

—
0.757 rad/s

On the other hand, computirge” for a sampling interval s - :
of T = 1syields Real Axis

o [—0.09721 —0.46511 .

0.2325 0600 Fig. 3. Nyquist diagram ofn(z) with T = 1s.

Then
A— —0.09721 —-0.4651 B— 0.4651 + G >
| 02325 06004~ |0.3996 -
and
_ —0.222+0.72+0.2105
m(z) T2 0.5032z+ 0.04979 Fig. 4. A negative feedback-loop.

In this case, the Nyquist diagram ai(z) is given in Fig.
3. Note that there exists on the Nyquist diagram a range of gservation 2:Each Nyquist plot of % 1G(el®) is sym-
) K
w from 0.757 rad/s to ®52 rad/s (and another range frompyegrical about the real axis of the complex plane, where
—0.952 rad/s to—0.757 rad/s) over which neither Property , - [1,00).1
(i) nor Property (ii) of Definition 4 holds. The discretisa-  qpgervation 3:As k and@ vary continuously, the point in

tion procedure thus fails on this occasion to preserve thga complex plane on which the Nyquist plot of £ G(elf)
property of “mixedness.” That is, this discrete-time mook! |ics varies continuously.

the continuous-time system, obtained whEn= 1s, is not Observation 4:As K —s o 1+1G(eje) 1
: , = .

‘mixed.” Observation 5:Suppose thak is very large such that

1+ 1G(el?) is almost equal to 1 for alp € [—, . Then

suppose that is continuously decreased towards 1. Suppose
A feedback stability result for “mixed” discrete-time sys-that the Nyquist plot of 4 G(el?) encircles the origin at least

tems is presented later (in Section I1). The proof of theiltes once. Then there must exist at least aqeand one8y for

is based on classical Nyquist techniques. Hence, a discretghich 1+ K—loG(ejeo) =0.

time version of the well-known Nyquist stability theorem is  The following corollary has thus been established.

recalled, as follows. Corollary 2: Adopt the hypotheses of Theorem 1. Then
Theorem 1: [30, page 74] [31, Section 3.2] Considera sufficient condition for the Nyquist plot of £G(el?) to

the feedback-loop depicted in Fig. 4. Suppose (B@t) is make no encirclements of the origin is that, for ik [1, )

a strictly proper, real-rational transfer function of akdéa and all6 € [-m, 1], 1+ %G(eje) #0.

discrete-time system. Then the feedback-loop is stabledf a The next result is also required.

only if the Nyquist plot of 1+ G(el®) for —m< 6 < it does Lemma 3:Let Gy(z) and G(z) be square, proper, real-

not make any encirclements of the origin. rational transfer function matrices with no poles on or
In the above theorem, stability is defined in the senseutside of the unit circle in the complex plane. Suppose

of [30, Section 3.7]. Note, also, the following observagion that G (ei%) 4- G (el%) > 0 andG;(el%) + G, (el%) > 0 for

concerning the Nyquist plot of £ G(e/®) for —-m< 68 <m.  somef, € [—t,71]. Then defl + G1(e/®)Gy(el%)] £ 0.
Observation 1:The Nyquist plot of 1+ G(e/®) belongs to

a family of Nyquist plots of 1 2G(e/®), wherek € [1, ). ISince 1+ 1G(e 19T) = 1+ LG(el®T).

C. Preliminary Results



Proof: Since  Gj(el%) + Gi(el%) > 0, ier [EMy(e)Ma(el)| < 1 since %| 1(el®)My(el?)| =
O[Ai[Gi(el®)]] > 0 Vi (where Aj[] denotes theith | My (el®)Mp(elf)|. So 1My (el®)M,(e/?) # —1 for anyk €
eigenvalue) [32, Theorem 1 of Section 13 1] and szpl ).
Gi1(e!®) is nonsingular. TherG;*(e Je0) +G; Lel®) > 0 Part II: for any@ € ©,. From Property (i) of Definition 4,
since Gj(el%) + Gy(el%) and G, l(el%) + G *(el%)  M(el?) +Mi(el®) > 0 for i = 1,2. Observe thaMi*(eje)+
are Hermitian congruent [33, page 415] Therw,; (ele) > 0 if and only if \/1_M (el9) + TM i(el®) >0,
Gy (ejeo) + G3(el%) + G, (el%) + Gy(el%) > 0. Hence \herek > 0. Then, from Lemma 3, 4 X 1My (el®)M,(elf) £

D[/\ Gy (ejeo)JrGZ(eJeo)]] >0 Vi and so dé6;'(e%)+ o for anyk > 0, and hence for any > 1. n
Gz(eJQO)] # 0. Then del + G1(el®%)G,(e/%)] +# 0 since
defl + Gy(el®)G,(el®)] = defGy(e j@o)]det[Gil(ejeo) + V. EIGENVALUE-BASED CHARACTERISATION
G, (el®)] and G (e/%) is nonsingular. [ | A procedure for testing whether a discrete-time system
is “mixed” is now provided. Consider an arbitrary, causal,
[Il. FEEDBACK STABILITY linear, shift-invariant system, described by the equation
As demonstrated in Example 1, the assumption that, x(k+ 1) = Ax(K) + Bu(k), X(0) = o,

upo‘rlw (_Jllscrensa’:uon, systems retain certain propertl_eshs y(K) = Cx(K) + Du(K),
as “mixedness” or passivity, is not always a valid one.
This issue with system discretisation is well-known of inwherex(k) € R", u(k) € R™, y(k) € R™, Ac R™", Be R™™,
the case of passivity [34]. The following result shows thatz € R™" and D € R™M™ with A stable? Furthermore,
if “mixedness” has been established in discrete-time, thesuppose thatA is nonsingular. Denotind(z) := C(zl —
a feedback stability result holds. (A test for determiningd)~1B+ D andM*(z) := [M(z 1)]T gives
whether a system is “mixed” in discrete-time is the subject AT | _A-TCT
of Section IV.) M*(z) = BTAT D' _B'ATCT |’ 1)
Theorem 4 is analogous to the feedback stability result
presented in [17] for “mixed” continuous-time systems. Afrom  [36, Section 21.4}. Let G(elf) :=
simpler version of Theorem 4 was proposed in [35, Propo-kM*(el®)M(el®) + M*(el®) + M(ei®) — I and
sition 4]. Gy(el?) := —M*(el®)M(el?) + £2I. Consider the following
Theorem 4:Suppose thatM;(z) and Mx(z) denote the two results.
transfer functions of “mixed” discrete-time systems, inte Lemma 5:Suppose thak,| ¢ R and considerGy(el®)
connected as depicted in Fig. 5, where one of these transtes defined above. Léf ;=1 —kD and suppose thaX; :=
functions is strictly proper. Suppose that there exist two-kD'D+ DT +D —II and X; := X; — BTA'TCTY are in-
closed sets oB: (a) a set denoted b@, that consists of vertible. For somef € [, 71], the matrixGy(e/®%) has a
6 € [—m,m over which both Mi(e/) and M,(el?) have zero eigenvalue if and only if the simplectic mat$x has
associated with them Property (i) as given in Definition 4an eigenvalue on the unit circle at the poife, where
and (b) a set denoted I8 that consists 08 < [, 1] over Ei+UETY, —UET
which both My (e/®) andM(el?) have associated with them S = ( ! ElT\l/ ! El,Tl )
Property (ii) as given in Definition 4. Finally, suppose that B !
OpUBOs= {0 € R: —m< 6 < m}. Under these assumptions,and E; := A—BX; YTC, Uy := —BX;'BT, V; :=kCTC +
the feedback-loop in Fig. 5 is stable. (:TY)(1 yTc.
Proof: The goal is to show that, for alk € [1,) Proof: Given that
and all@ € [—m, 71, 1+ 1My (el?)My(el®) # 0. From Corol- 61 a1
lary 2, this is a suffigient condition for stability of the [ i (™ —A) i T ]

’ . 2 —k(ei] —A-T)~IA-TCTC(el®] —A)~1  (eifo] —A-T) 1
feedback-loop. Subsequently, the proof is split into two .
parts: first, it is shown that + M, (el®)M,(elf) 0 for _ |eifo] _ A 0 @)
all k € [1,0) and all € ©s; and second, it is shown that —kaTcTc AT ’

14 ¢Ma(el)My(e!%) £ 0 for all k € [1,) and allg € ©p. 0 thatGy(el®) = —k[-BTA T(el®] — A-T)"IA-TCT +
Part I: for any6 € ©s. From Property (ii) of Definition DT _ BTA*TCT][ (eJeOI — A o D] — BTA*T(ejGOI N
o i 0 )
4, IMi(e!?)| <1 fori=1,2, and henceéM;(e!®)M,(e!’)| < “T\—1A-TAT | AT _ RTA-TAT 61 ay-1 .
1 Then 1M (el®)M-(ei® 1.1 >1_A)AC+D_§AC+C(eIA)B+D
. Then ¢IMy(e)Ma(el®)] < ¢ < 1 for any k > 1; | _ C(el®l — A)~1B+ X3, where
M, » M

= A 0 > B
A= (—kATCTC AT>’ Bi= <ATCTY>
+ 2 1 and

- C:= (YTC+kB'ATCTC -BTAT),

\

%le: p(A) < 1 [36, Section 21.1].

. ) _ ) ) 3The notation on the right-hand side of (1) denotes a staeespealisa-
Fig. 5. A negative feedback interconnection of “mixed” syss. tion.




using [37, Lemma 3]. Then, in the manner of [38, Lemmand

1 Ys:={0 € [-mm]:S has an eigenvalue on the unit circle

det Gy (%)) atel®}.

- de(g(ejeol _A)~ 1B_+ Xl) _ Remark 1:It has been assumed that the system does not
= det(X;) det(l + X, 'C(e/®I — A)~'B) have a strictly proper transfer function in order to faai
= det(Xy) det(| + (el _5)71871715) (Sylvester’s the applicgt_ion of Lgmma 5 t6(el?). .
Determinant Theorem) Next, divide two intervals of—7r to T up into smaller
intervals, where any elements ¥, and¥s are set as open

= det(Xq) det((e!®1 — A) ') det(e!®l — A+ BX; 'C) interval endpoints, as follows:
= det(Xq) det( (€1 — A) ™) det((e*1 —A™T)™) Division Group 1=
de(ejeol ; ﬁl)’ [—7T, 991)’(9P1’9P2)""7(995717995)7(99577_[]
whereH; := A—BX; 'C. Sinceé is stable, then dé/| —  Division Group 2=
_ o A e
T
0 noting that (~1)"detei®l)dete %] — A)detfA 1) = where n = number of elements iW,; m = number of

detel®l — A1) = detel®l — A~ T) from [39, Equation elem_ents ?nq_Js; Gpl,_epz,...,epﬁ denote the elements of
6.1.4]. Thus,Gi(el®) has a zero eigenvalue if and only if Wp listed in increasing order; ané,,6,,...,6; denote
det(ejeo| _ ﬁl) — 0, ie: H; has an eigenvalue on the unitthe eIements_oﬂlJS I|sted_ in increasing order._ W, is
circle at the poinei®. Finally, H; = S; via matrix inversion €MPty, thenn =0 and Division Group 1 consists of the
identities [36, Section 2.3]. m Single interval[—r, 11]; similarly, if Ws is empty, thenm=
Lemma 6: Suppose that € R\ {0} and conside6,(el®) 0 and Division Group 2 consists of the single interval
as defined at the beginning of the section. Suppose that’s7- If 8p = —1 and 8p; = 7, then Division Group
—DDT4£2, Xp:= —D'D+£2l andX,:= X,+BTATCTD 1 becomes(—rr, sz),(sz,6p3),....,_(.6pn:1,n). Similarly, if
are invertible. For somdy € [~ 71, 71, the matrixGy(eifo) O« = —Tr and 8; = 7, then Division Group 2 becomes
has a zero eigenvalue if and only if the simplectic ma8ix (_"g 6s,), (.952, 9_93),...,(_9%,1, ") ~
has an eigenvalue on the unit circle at the peife, where  Finally, identify the sign definiteness G (e!”) over each
of the individual intervals in Division Group 1, and the sign

S = ( E2+U§'T52 V2 _UZEZ T > definiteness of5,(el) over each of the individual intervals
—E V2 E, in Division Group 2. Determining the sign definiteness over
and E, = A+ BX2*1DTC, Uy = —BX{lBT, Vp = any qf these interv_als can be iacr_lieved.by checking the sign
£2CT(—DD" + £2)-1C. Qef|n|tene§s at. a singke from within the interval, eg: at the
Proof: Given (2) with k — 1, note that interval midpoint. Letlé1 denote the set 06 belonging to
Gy(el%) = —[-BTA T(el%l — ATIATCT DT__ those intervals over Whicﬁzl(eje) >0, andlézvdenote the
BTATCT][C(e/%l —A)~1B+ D]+ €%l =C(el%l —A)"1B+  set off belonging to those intervals over whiG(ei®) > 0.
X2, where Then, implement the following result.
_ A 0 _ B Theorem 7:The following two statements are equivalent.
A= (—ATCTC AT)v Bi= (—ATCTD) (a) A discrete-time system, as described at the beginning

q of the section, is “mixed.”
an .
— (b) Iz Ulz ={8eR:—n1<O8<m}
 (_pT TA-TeTe _RTA-T G~ Gy
C:= ( D'C+B A CIC -B'A )’ Sketch of ProofRecall, from Definition 4, that an input-
from [37, Lemma 3]. Then, in the manner of [38, Lemmadutput stable, discrete-time system with square, propat; r

1] and similar to the proof of Lemma 5, d€,(el®)) = rational transfer function matrix(z) is “mixed” if, for each
detXy) det((el®l — A)~1)det(el®l — A-T)"1)detei®l — 6 € [—m, 7], Property (i) and/or Property (ii) hold. Fd
|—~|2), whereH, .= A— B—XZ*lC, The remainder of this proof continuously varying over some small interval, over which
follows in the manner of the proof to Lemma 5. m a “mixed” system is alternating between exhibiting only

Lemmas 5 and 6 can be utilised for testing whether Rroperty (i) and only Property (i), there exists at leasé on
system of the form given at the beginning of the section isommon @ in that range at which both Property (i) and
“mixed” in the following manner. Property (ii) hold due to continuity. In general, over ini&lis

Let é’l(ejﬂ) denoteGl(eje), wherek = | = 0. Similarly, with open endpoints, the existence kfl > 0 such that
let Gy(el?) denoteG,(el?), wheree = 1. Upon applying —kM*(el®)M(el) +M*(el?) + M(ef) —II > 0 implies that
Lemmas 5 and 6 t&;(el®) andG,(eif), respectively, set M*(el®) +M(el®) > 0, and the existence af< 1 such that

, . —M*(el?)M(el®) 4 €2l > 0 implies that—M*(el®)M(ei?) +
Wp:={6 €[-mm:$ has an eigenvalue on the unit circle| | 0; while the converse (i&vl* (€1) +M(e/®) > 0 implying
atel} the existence ofk,| > 0 such that—kM*(el®)M(el®) +



M*(ei) + M(ei®) —1I > 0, and —M*(el®)M(ei®) +1 >0 [15]
implying the existence of < 1 such that-M*(el%)M(el®) +
€21 > 0) is not necessarily true. However, any overlap of open
intervals from Division Group 1 and Division Group 2 suchi16]
thatlg Ulg = {6 eR: —m< 6 < m} implies the existence

1 2 ~ ~
of common@ at which bothG;(el®) > 0 andG,(el?) >0, 7]
and these commof can be taken as closed endpoints of
subintervals existing within the open intervals over WhicihS]
Gy1(el?) > 0 or Gy(el?) > 0. For closed interval endpoints,
the implication directions concerning the matrix ineqtiedi
go both ways, and hence the equivalence in the theorem]
statement holds.

V. CONCLUSIONS [20]

In this paper, “mixed” systems were characterised in gy
discrete-time setting. The purpose of doing so was to peovid
a foundation for future studies concerning discretisagion
cedures that preserve “mixedness.” A discussion on systeras;
with strictly proper transfer functions in relation to Seat

IV will also follow at a later date.
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