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Abstract— In this paper, we use classical Nyquist arguments systems; see Sections Ill and IV. Previous work in this
to derive stability results for large-scale interconnectons of  direction appeared in [12], [13]. Our work goes beyond
“mixed” linear, time-invariant (LTI) systems. We compare our [13] in a number of ways. First, we present more detailed

results with P. J. Moylan and D. J. Hill, Stability criteria f or N ist ts. b d tiall L
large-scale systemdEEE Transactions on Automatic Contrafol. yquist arguments, based essentially on a Lyapunov argu-

23, no. 2, 1978, pp. 143-149. Our results suggest that, if one ment. Secondly and most importantly, we utilise the tech-
relaxes the assumptions on the subsystems in an intercontien ~ niques to obtain new sufficient conditions for the stabitify

from assumptions of passivity or small gain to assumptions |arge-scale interconnections of “mixed” systems. Ourdarg

of “mixedness,” then the Moylan- and Hill-like conditions on  grq1e interconnection results suggest that, as one relaxes

the interconnection matrix become more stringent. We also th fi the t fer functi tri f th
explore the stability of large-scale, time-varying interonnec- € assumptions on the fransier function matrices o e

tions of strictly positive real systems. We determine a corifon ~ Systems, eg: from assumptions of passivity to assumptions
that guarantees the existence of a Lyapunov function for the of “mixedness,” the Moylan- and Hill-like conditions on the
interconnected system. interconnection matrix [8] become more severe.

I. INTRODUCTION f'{f]is[gia\?i;fflsodc[olg?cts an er_rorI in[';'heore_ms 1,b6,;£nd 9
e Lo of [1], [2], an , respectively. Determining bo
The study of "mixed” systems [1], [2] is inspired by ;. "} \nded output (BIBO) and finite-gain stability of

situations in which high frequency dynamics neglected fo|rnterconnections of “mixed” LTI systems in a dissipative

modelling PuUrposes _m|ght destroy the passivity IC)rop(:“rt'es?}/stems framework was the concern of these works. Roughly
of an otherwise passive system. These unmodelled dynamics

will always be present in a real system. As such, the pa;zsivigpeakmg’ a system that produces a bounded output for any
I

theorem alone mav not be adequate to show that the stabil ounded input is said to be BIBO stable. The issue with the
may aeq Yorementioned results, however, is that the system output
of the system interconnection is guaranteed [3]. The boqg

[4], see also [5] and [6], described tools for establishing t was assumed to be boundadpriori. In effect, the works

I . : . indicate the existence of a bound on the output in terms of
stability of adaptive systems of the type examined in [3];, . . e
. L . the input; but where BIBO stability is already assumed. Our
that is, where passivity-type properties hold only for low i . .
: present treatment of “mixed” LTI system interconnections
frequency signals.

A “mixed” LTI system, as defined in [7], is a system thatvIa Nyq_wst techr_uques prowde_s_an approach for deriving
: . . ) . .the originally desired BIBO stability results.
combines notions of passivity and small gain behaviour in a _. . : .
. . A . Finally, in Section V, we explore the stability of large-
certain manner. Roughly speaking, “mixed” systems exhibit ; S . ; : .
. . .“scale, time-varying interconnections of single-inpuhgée-
small gain behaviours over frequency bands where passivi tput (SISO), strictly proper, strictly positive real (®P
behaviour is violated. Hence, “mixed” systems formalise g b X Y Proper, y p

X X T . systems. We derive a condition that guarantees the exestenc
notion that engineers have intuitively held for a long time; ; :

) . .of a Lyapunov function for the interconnected system. Par-
that keeping feedback-loop gain small at those frequenuﬁs

where passivity is violated will avoid destabilisation aglh cularly, we show that, by replacing passivity with SPRnes

frequency dynamics. A test for determining whether multid> 2" assumption on the subsystems in a time-varying

. . o interconnection, the classic result [8, Thm. 4] extendsiiths

input, multi-output (MIMO), LTI systems are “mixed” was " . . .

. . a way that the condition on the interconnection maittinow

introduced in [7]. becomes that there exists a diagonal ma@ix 0 such that
Independently, the study of the stability of large-scal 9

: : . ; A %(t)TQ+QH(t) >0 for all timet > 0. This follows from
interconnections of systems is of increasing importance. .

: L e Kalman-Yakubovich-Popov (KYP) lemma. We conclude
Some works on this topic include [8]-[11].

In this paper, we apply classical Nyquist techniques tér;?nzagi?;cl:oiicgcl)?r}u\{lzrveyltrgsae:rlj:rk?mary of our results and
give stability results for interconnections of “mixed” LTI '
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be denoted byo(A) and g(A), respectively. For a transfer M*(jw) + M(jw) — 1l > 0; and/or (ii) —M*(jw)M(jw) +
function matrix G of a LTI system,G*(jw) := [G(jw)]*. &2l > 0. The constant&,| >0 ande < 1 are independent
Z% denotes the set of proper, real-rational transfer functioof cw.

matrices.%. is a Banach space of matrix- (or scalar-) valued An example of a “mixed” system is a system with transfer
functions that are essentially bounded @R with norm function

|Gllw := €SS SURcr O(G(jw)). ZLew := #N Zeo CONSiStS m(s) = 3

of all proper, real-rational transfer function matriceshwio (s+1)(s+2)

poles on the imaginary axis. The Hardy spa#€ is the and Nyquist diagram as depicted in Fig. 1. From the
closed subspace ot with functions that are analytic and Nyquist diagram, it is clear that there exists a frequency

bounded in the open right-half plane (RHP). In other wordsy such that, over the frequency barndQ,Q], Property
s is the space of transfer function matrices of stable, LTlj) of Definition 3 holds and, over the frequency bands

continuous-time systems?. %, := % N .z consists of all [_w _Q] and [Q,=], Property (i) of the definition is
proper, real-rational transfer function matrices with rdels  gatisfied. (Note thatl[m(jw)] = %[m*(jw) +m(jw)] and
in the closed RHP. Im(jw)? = m*(jow)m(jw).)

We will also require the following preliminary results.
Lemma 4:Suppose thaiG; € Z %« and Gy € Z L.

Before presenting the main results of the paper, we e&yppose further that, at some € RU {+w}, Gi(jw)+
tablish several definitions. Consider a causal system Witﬁl(jw) > 0 and Gj(jw) + Ga(jw) > 0. Then dell +
square transfer function matrid € Z5¢ .. Suppose that G1(jw)Ga(jw)] # 0.

a,b,c.deR. Refer to [16] for the proof. Letting3; = | and setting

Definition 1: [7] A causal system with square transferg ._ G, in the above lemma statement gives the following
function matrixM € Z.5# . is said to be input and output corollary. (Alternatively, we can séb:= G; and letG, —

Il. DEFINITIONS AND PRELIMINARY RESULTS

strictly passive over a frequency interValb], (—e,c], [d,) | {5 obtain a version of the corollary containing a strict
or (—oo, ) if there existk,| > 0 such that inequality.)
kM (jo)M(j@) + M*(jw) + M(jw) — 11 >0 Corollary 5: Suppose thaG € Z.Z. and that, at some

weRU{zxmo}, G*(jw)+G(jw) > 0. Then ddl +G(jw)] #

for all w e [a,b], (—,c], [d,o) or (—w, ), respectively. 0.

We will say that the system is input strictly passive Versions of the next corollary can be found in [17, Lem.
over a frequency interval if Definition 1 is satisfied with7 of Sec. VI.10] and [18, Thm. 2.3.4].
k= 0; output strictly passive over a frequency interval if the Corollary 6: Suppose thaG € #.%. and that, at some
definition is satisfied with = 0; and passive over a frequencyy ¢ R U {+o0}, G*(jw) + G(jw) > 0. Let Sjw) =
interval if it is satisfied withkk =1 = 0. Note that anM(jw) (G(jw)—1)(I +G(jw)) L. Then—S'(jw)S(jw)+1 > 0.
satisfying Definition 1 over the frequency intervat,c], See [16] for the proof. An extension to Lemma 4 is given
[d,) or (—e,0) must be such that ligL, 1 Ai[M*(jw) +  below.
M(]OJ)] =Cp, > 0 for all i, where A; € R denotes theath Lemma 7:Suppose thalG; € Z%» and Gy € ZL .
eigenvalue of the Hermitian matrid*(jw) +M(jw). Then  sSuppose further that, at some € R U {+w}, Gi(jw) +
liM s 10 defM*(jw) + M(jw)] # O.

Definition 2: [7] Define system gain over a frequency
interval [a,b], (—o,c], [d,) Or (—, ) as

£:=inf{E€ R, : —M*(jo)M(jw) + &2l > 0 for all !
we [a,b], (—,c], [d,®) or (—ow, o), respectively. 08
0.6F
The causal system with transfer function matixc % .7
is said to have a gain of less than one over the frequen 2 04,
interval[a,b], (—co,c], [d,c) or (—co, ), respectively, ife < < 02f
g
£ ot
For any system satisfying Definition 2 with gain of less g ool
than one over the frequency intervél-o,c], [d,o) or B
(—00,00), it must hold that ling,— 1o A[—M*(jw)M(jw) + —0.4r
I] =c5 > 0 for all i, whereA; € R denotes thdth eigen- ~0.6)
value of the Hermitian matrix-M*(jw)M(jw) +1. Then o8l
liM g1 def—M*(jw)M(jw) + 1] # 0. We now define a '
“mixed” system similarly to [7]. = 05 0 05 1 15
Definition 3: A causal system with square transfer func- Real Axis

tion matrix M € Z.7 . is said to be “mixed” if, for each
frequency w € RU {+£ow}: either (i) —kM*(jw)M(jw) + Fig. 1. Nyquist diagram ofn(s).



Gi(jw) > G (jw)KG1(jw) and G5(jw) + Go(jw) > —K, s that, for allk € [1,00) and all w € RU {£}, defl +
whereK is a real-symmetric, positive semidefinite matrix.%Gl(jw)Gz(jw)] #0.
Then defl + %Gl(jw)Gz(jw)] # 0 for any k > 1, where Subsequently, we will present scenarios in which this
K e R. sufficient condition is satisfied and thus the stability of th
For the proof, refer to [16]. Lastly, since our aim isnegative feedback-loop is guaranteed.
to deduce stability of interconnections of “mixed” systems
using arguments based on classical Nyquist techniques, we
state a MIMO version of the Nyquist stability theorem.
Theorem 8: [19, Thm. 5.8] [20, Remark 4 of Sec. 4.9.2]]c
Consider the feedback interconnection of systems depict
in Fig. 2. Suppose thaG; € ZH w, Gy € Z#» and
that the system interconnection is well-posed. Then t
feedback-loop is stable if and only if the Nyquist plot of
defl +G1(jw)G2(jw)] for —o < w < 0 does not make any
encirclements of the origin.

IlIl. SIMPLE FEEDBACK-LOOP

We first give a rapid proof of a stability result for simple
eedback interconnections of systems with “mixed” small
% in and passivity properties. A result of this manner ap-
Hpeared in [13]. We utilise the Nyquist discussion presented
above. As stated in the introduction, our purposes for doing
so are twofold: first, we correct an error in Theorems 1, 6 and
3, respectively, of [1], [2] and [14] (in these, the systent-ou
In the above theorem, well-posedness and stability a ut signals were assumed to be boundetiori); secondly,

: . fie technique paves the way to obtaining new sufficient
defined in the sense of [19, Sec. 5.2 and Sec. 5.3]. NOt(?Onditions for the stability of large-scale interconnens of

also, the foIIo_Wing opservations concerning the Nyquist pl “mixed” systems, which we present in Section IV.

Ofgﬁt[l +th'(1wi'GT2rEJw)].N ist lot £ det Theorem 10:Suppose thail; € Z.7 . andMy € ZH o

G (i servation =.1he yquist — plo o qt + denote the transfer function matrices of “mixed” subsys-
1(Jw)le(19))] belgngs to the family of Nyquist plots of tems interconnected as depicted in Fig. 3 and that this

def! + ?Gl(.J w)GIZ(Jw)]’ Where;.< € [1,%0). interconnection is well-posed. Suppose that there exist tw

1 Ob;ervatpn 2.E_ach Nqust plot ~ of d¢t_+ distinct sets of frequency bands: (a) a set denoteddhy

CLUW)C(jw)] is symmetric albout the real axis of yat consists of frequency intervals over which bbth(jw)

the comple>_< plane, where € 1, ). . . andMy(jw) have associated with them Property (i) as given

. Observation 3:As k and w vary contlnupusly, the point in Definition 3; and (b) a set denoted 1§ that consists

'? thg compllex plgne on which Fhe Nyquist plot of flet frequency intervals over which bot;(jw) andMz(jw)

kC1(iw)Gz(jw)] lies varies continuously. have associated with them Property (ii) as given in Definitio

Observation 4:As k — o, defl + Gy (jw)Ga(jw)] = 1. 3 Fyrthermore, suppose thay UQs = RU{+w}. Then the
Observation 5:Suppose thak is very large such that negative feedback-loop is stable.

defl + £G1(jw)Ge(jw)] is almost equal to 1 for all Proof: Our aim is to show that, for alk € [1,) and
w € RU{+xw}. Then suppose thak is con'Finuoust de- gl we R U {£oo}, defl +%Ml(joo)M2(jw)] £ 0. From the
creased towards 1. Suppose that the Nyquist plot df @et o ious section, this is a sufficient condition for staili
Gi(jw)Ge(jw)] encircles the origin at least once. Thenwe spiit our proof into two parts: (i) first, we show that
there must exist at least oy and onewy for which def +%M1(jw)M2(jw)] £0 for all k € [1,0) and allw

1 i ; —
detl + i Ga(jwn)Ge(jwn)] = 0. _ Qs and (ii) then, we show that det- £ My (jw)Ma(jaw)] #0
We have thus established the following corollary. for all k € [1,) and allw € Q.

Corollary 9: Adopt the hypotheses of Theorem 8. Then payt (): vy ¢ Q.. From Property (i) of Defini-
a s_uff|C|en_t condition for the Nqust plot of qew_ _tion 3, for i — 1,2, there exists ang < 1 such that
G1(jw)Gy(jw)] to make no encirclements of the Or'g'n—Mi*(jw)Mi(jw)+£i2I > 0. This implies that, fori — 1,2,

. . . o(Mi(jw)) < 1, which implies thato(M1(jw)M2(jw)) < 1

lProof  outline:  det + 1Gi(—jw)Ga(—jw)] = def(l + ) LA ) ) — . — .

163(jw)Gj(jw)T] = defl + 2G3(1)G;(jw) (rom [21, Eqn. 6.1.4) SNCEI(Mi(jw)M(jw)) < 0(Ma(je)) o (Mz(jw)). Now

6:;121]{)0 + 1G1(jw)Gz(jw))*] = defl + £ Gy (jw)Gz(jw)] (from [21, Ex. 0< 1— G(Ma(joo)Ma(j)) < ol + Ma(jw)Ma(j))
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Fig. 2. A negative feedback interconnection.
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Fig. 3. A negative feedback interconnection of “mixed” gyss.



from [19, Sec. 2.8] and sa(l + M1(jw)Mz(jw)) # O Theorem 11:An interconnection of “mixed” subsystems,
which is equivalent to dét+ Mi(jw)M2(jw)] # 0. Fur- with input u and outputy, as described above, is stable if
thermore, dét + %Ml(jw)Mz(jw)] # 0 for any k > 1. there exist positive definite matric&:.= diag(pal,...,pn!)
This is becauses(Mi(jw)Mz(jw)) < 1 is equivalent to and Q := diagqil,...,qul) such thatHTQ+QH > 0 and
Lo(Mi(jw)Mz(jw)) < 2 (which is< 1) for anyk >1,and —HTPH+P > 0.
S0 5(%M1(jw)M2(jw)) < 1 for anyk > 1. Then For the proof, see [16]. Fixing® = Q =1 in the above
1 1 theorem statement gives the following result.
0<l-0o (—Ml(jw)Mz(jw)> <g (I + —Nll(jw)l\/lz(jw)> Corollary 12: An interconnection of “mixed” subsystems,
K K e . . ;
with input u and outputy, as described above, is stable if
for any k > 1 and from this the determinant inequality iSHT +H >0 and—HTH +1 > 0.
immediate. _ o Our next version of a large-scale interconnected “mixed”
Part (ii): Yo € Qp. From Property (i) of Definition 3, for systems stability result involves a degree of relaxation on
i =1,2, there exisk;li >0 such that-kM/(jw)Mi(jw)+  the requirements of the interconnection structure desdrib
Mi'(jw) +Mi(jw) —1il > 0. This implies that, foii = 1,2, by the matrixH, compared to the conditions d specified
Mi"(jw) +Mi(jw) > 0. Observe thaM(jw) +Mi(jw) >0 in Theorem 11. This relaxation is achieved by taking into
if and only if %Mi*(Jw)Jr %Mi(lw) >0, wherek > 0. gccount the values dé and & associated with each of the
Then, from Lemma 4, dét+ %Ml(jw)Mz(jw)] #0 forany “mixed” subsystems in the interconnection, whereenotes
Kk >0 and hence for anx > 1. B the gain of theith “mixed” system over frequencies @,
IV L ARGE-SCALE |NTERCONNECTIONS yvhile k| provides a measure of output §trict passivity for the
' ith "mixed” system over frequencies i€p. Suppose that
Building on the techniques of the previous section, W& :— diagkyl,...,kyl) and E := diag&il,...,enl), where
now present sufficient conditions for the stability of largek; ~ 0 and 0< & <1 fori=1,...,N.
scale interconnections of systems with mixtures of smafl ga  Thegrem 13:An interconnection of “mixed” subsystems,
and passivity properties. Consider a linear interconodif  \yith input u and outputy, as described above, is stable if
N “mixed” systems with square transfer function matricegnere exist positive definite matric®s = diag(pul, ..., pnl)
denoted bMi € #7w, i = 1,...,N. The interconnection is angQ := diag(qyl,...,qul) such thatHTQ+QH + QK > 0
described by " and—HTPE?H + P> 0.
g =U— Z Hijyj, Refer to [16] for the pro.of. SeP = Q_: | in the above
=1 theorem statement to obtain the following corollary.
wheree is the input to subsysteiny, = Mie is the output _Co_rollary 14: An interconnection pf “mixed” su_bsystems_,
of subsysteri, u; is an external input ané;j is a matrix with input u and outputy, as described above, is stable if

with real, constant entries. Writing HT +H+K>0and-HTE?H+1 > 0.
Next, we compare our stability results for large-scale
€1 Y1 Uz interconnections of “mixed” systems to the large-scale in-
e=|:|,y:=|:]andu:=|: [, terconnection stability results of [8, Sec. IV and Sec. ¢ (f
en YN Un example, see [8, Thm. 4 and Thm. 5]). In [8], a sufficient

. . L , condition for the stability of large-scale interconnenoof
the interconnection description may be written more coMassive systems is the existence of a positive definite diago

pactly as nal matrixQ such thaHTQ+QH > 0. A necessary condition
e=u-—Hy, (1) for this linear matrix inequality (LMI) to be feasible is tha
where H is a matrix with block entriesH;;. Let M := H has all eigenvalues with positive real parts [22, Thm. 1
diagM1,...,My) such thaty = Me. Eliminatingy from (1), ©of Sec. 13.1]. Similarly in [8], a sufficient condition foreth
we havee = (I + HM)u. Then stability of large-scale interconnections of systems \iitlie
N N gain is the existence of a positive definite diagonal ma®rix
y=M(l +HM) u. )
This set-up is depicted in Fig. 4. We will assume that the
interconnection is well-posed and impose the followingaxt u € ~ y
conditions on the systems in the interconnection, sinyiltrl —+>9—> M |
Theorem 10. We require the existence of two distinct sets of

frequency bands: (a) a set denoted @y that consists of
frequency intervals over which eveiy;(jw) has Property
() as given in Definition 3 associated with it; and (b) a
set denoted by)s that consists of frequency intervals over H g
which everyM;(jw) has Property (i) as given in Definition
3 associated with it. Again, we also require iU Qg =
RU {iw}. In the following, pi,g € R fori=1,...,N. Fig. 4. A large-scale interconnection of “mixed” systems.




such that—HTPE®H +P > 02 A necessary condition for u e Y,
this LMI to be feasible is that all of the eigenvalues of Ml 'Y
EH lie inside the unit circle centred at the origin of the
complex plane [23, Thm. 5.18]. Our results indicate that,
as one loosens the suppositions on the subsystems in an
interconnection, from passivity or finite gain, to “mixeds¢

the [8]-like conditions for stability on the interconnemii
matrix itself become more stringent, ie: more restriction
is imposed on the structure of the interconnection, ie: the

Y

<

matrix H has to “work harder” in order for stability to u—+>QT> 1\/[2 v > ’Y
be guaranteed. For instance, in Theorems 11 and 13, the? 2 2
existence of solutions to a pair of LMIs, as opposed to a _

single LMI, is sufficient for stability; we illustrate thisomt Fig. 6. Example 2.

further with the following example.

Example 1:Consider the example of an interconnecte%ince the eigenvalues ¢iT +H +K and | — HTH are

system from [8], depicted in Fig. 5, with InterconneCtlonpositive, the interconnection is stable by Corollaries hd a

matrix
1 0 -y 14. O
H= Bl 711 2 V. TIME-VARYING INTERCONNECTIONS

) The final contribution of this paper concerns obtaining a
Assume thaGy, Gz andG3 are passive and that8 <y <1.  giapjlity result for time-varying interconnections of €IS

According to [8], under these conditions, one should ber| strictly proper systems. Consider tH¢ SISO, LTI
able to find a positive definite diagonal matxsuch that gysiems

HTQ+ QH > 0 which thus means that the interconnected

system is stable. Using the Robust Control Toolbox (MAT- X = AiX + big,

LAB R2009a) we verify that, for any-8 < y < 1, finding a yi=c'x

solution to the LMIHTQ+QH > 0 is indeed feasible. P
Now suppose that we relax the suppositions@n G, i = 1,...,N, wherex(t) € R"1 A € RN ¢ RN*L

and Gz and assume that they are all “mixed” systems. Fag; € R"*1 andA; is Hurwitz, with transfer function; (s):=

the same values of, we search for positive definite diagonalciT(sI — A)'bi. Suppose thatA;,b;) is controllable and

matricesP andQ that satisfyH"Q+QH >0 and—HTPH + (¢ ,A)) is observable foi = 1,...,N. Define the vectors

P > 0 simultaneously. We find that this LMI problem is not

feasible for any-8 <y < 1. O X1 €1 Y1
We conclude the section with an example of an intercon- X:=|[1!|,e=]|:!]andy:=|:
nection of “mixed” systems for which stability is guarardee XN en YN

Example 2:Consider the interconnection of systems de-
picted in Fig. 6 and suppose thdi, M, andMj are “mixed,;” and let
with k; = ko = k3 = 0.01. Lety=0.5. ThenK = 0.01l and

%= Ax+Be, 3)
0o 0 05 y=CTx, (4)

H= 0 0 05] .
05 -05 O whereA = diag(Ay, . .., Ay) € R Fm)x(Mt+mn) B

diagby,...,by) € RM++mM)xN andC := diag(cy,...,cn) €
*Note that, in [8], system gaing appearing irE are not necessarily less Rt 4PN, Then (A, B)_ is controllable,(CT,A) is ob-
than one. servable andA is Hurwitz. Denote the transfer func-
tion of this new system as3(s) := C'(sl — A)"'B =
diag(Gi(s),...,GN(9)).
12 % Now, suppose thak(s) is SPR [18, Sec. 2.14], [24, Defn.
: v, 8.5], [25, Defn. 5.18]. TheQG(s) is SPR for any positive
) ] G3 T definite matrixQ := diag(qs,...,0n), wheregi € R for i =
- - 1,...,N, and the KYP lemma [18, Sec. 3.1.4], [24, Lem. 8.1],
[25, Thm. 5.14] states that there exists a positive definite
matrix P € R(Mt+m)x(nt+m) sych that

A

Y

ATP+PA<O,
Fig. 5. Example 1. PB=CQ.




LetH (t) be some matrix with real entries that are bounded|3]
continuous functions of time, that describes how tKe
subsystems are interconnected at tin¥e0, as follows:

(4]

e=—H()y. (5)
Substituting (5) and (4) into (3) gives
%= [A—BH(t)C"]x. ©

Define V(x) = x"Px as a candidate Lyapunov function for
(6). Then

V(x,t) = X" Px+x"Px
=xT[A—BH(t)CT|"Px+x"P[A— BH(t)C"]x
=x"[ATP+PA—PBH(t)CT —CH(t)" (PB)T]x
=x"[ATP+PA—CQH(t)C" — CH(t)"QCTx
=x"[ATP+PAlx— x"C[HT (t)Q+ QH(t)|Cx.

This derivative function is negative definite HT (t)Q +
QH(t) > 0 for allt > 0. Hence, we have the following result.

Theorem 15:The system described by (6) is uniformly
asymptotically stabfif there exists a positive definite matrix
Q:=diagqy,...,qn), wheregi e Rfori=1,...,N, such that
HT(t)Q+ QH(t) >0 for all t > 0.

VI. CONCLUSIONS

The key contributions of this paper concern the derivation
of sufficient conditions for the stability of large-scale) ( [13
time-invariant interconnections of “mixed” systems; aiijl (
time-varying interconnections of SISO, strictly propePF5 14]
systems. Concerning the first contribution, we showed tha{t,
relaxing the assumptions on the systems in a large-scais]
interconnection, from suppositions of passivity or small
gain, to assumptions of “mixedness,” results in the [8§lik
conditions for stability on the interconnection structiiself
becoming more stringent. Such a result has the potentiaf!
to steer strategies for large-scale system design and is a
direction for future research that the authors would likél7]
to pursue. In regards to the second contribution, the ins i1'8]
ration for studying time-varying interconnections emarge
from applications concerning (for example) mobile vehicle
networks, where agents, or vehicles, come in and out of ran§é!
with each other (ie: links between the systems are createg
or broken over time). Extensions of these results for time-
varying interconnections of MIMO, proper, SPR system&!!
seem straightforward and will be published at a later date(,;

(6]

(7]

(8]

El

(20]

[11]

(12]
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