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Abstract— Recent results on quadratic stability of state- for someb, c € R™, where(A, b) is controllable and 4, ¢) is
dependent switched linear systems are reviewed and applied pbservable. Parameter uncertainty arises through umgrta
to the problem of state-dependent switching with parameter in the location of the vector. Our method is to use a

uncertainty. Several examples are provided to illustrate he . . o
method, both as a means of determining stability of such quadratic Lyapunov function to deduce the stability of the

systems, and also as a tool for designing stable switched tgms ~ nonlinear system (1). The partition &" which governs
in the presence of uncertainty. switching has the following specific form. LEtbe a convex

polyhedral cone iR™, and letC™ be its positive polar (also

) o known as the dual cone) defined By = {y : y7z >
We consider the problem of designing state-dependegt,, a1l « C}. ThenC™ is also a convex polyhedral cone
switching systems subject to parameter uncertainty. @nlik4] we will assume that is in C*, that is

many of the problems considered in the switched systems .
literature, the switching rule considered in this paper is ccx>0 foralzeC. (2)

governed by dixed partitionof the state-space which cannot, region( is defined as? = C U (—C). Then we wish
be manipulated in order to achieve a stabilising switching) determine the existence of a matnB(:' PT > 0 such

law [1]. To be specific, we consider models where th?hat ATP 1+ PA < 0 and 27 (BTP+PB)x < 0 for all
state-space is partitioned into two regions, namely a dlos% £0en

double convex pointed cone iR™ and its complement,
with different dynamics operating in each region, and wherﬁ]

the goal is to find criteria that will ensure the stability of eneral partitions oR™ can be reformulated in this manner.
the resulting _nonhnear system. .SUCh problems may arsg, make this point clearer, we depict in the plane the type
for example, in rollover prevention systems in automotivey switching problem that is of interest (see Figs. 3 and 8).

control where an emergency action is initiated if the rol 2ecall, we wish to design a dynamic system of the form
angle exceeds some critical value and the load transfer rati

is greater than unity [2]. Furthermore the dynamics opegati . {Aa: rzeR”
€r =

I. INTRODUCTION

Before proceeding we note that such problems are well
otivated and arise frequently in practice, and often more

in each region are subject to parameter uncertainty. &tabil (A-bcT)z z€9Q

of this system class will be analysed by invoking a result tha

determines the existence of a quadratic Lyapunov functicgich that the closed loop is exponentially stable, where
(QLF) which is decreasing along every trajectory of thdhe region(2 is symmetric with respect to the origin. Such
system [3]. The result is illustrated by means of severdlystems arise where the control system has a normal mode

examples. of operation; and an emergency mode that may be activated
based on some other external signal. Another less obvious,

Il. MAIN RESULT but perhaps more compelling motivation, for addressing

Our basic objective is to deduce exponential stability ofhis type of model arises in situations where the switching
the switched system hyperplanes do not pass through the origin. Such a situation

i = A(z)z, Alz) € {A, B}, (1) is depicted graphically in Fig. 1. In Fig. 1, the maximum

and minimum ofzy might for example represent actuator
where A and B are Hurwitz matrices, where switching is constraints, and the threshold an the actual switching
orchestrated by a partition of the state-space that is fixddgic. In this situation, we might look for a QLF () =
a-priori, and where the matri3 is subject to parameter ™ Pz satisfying
uncertainty. Our specific objective here is to consider the

case whenB is a rank-1 perturbation ofi:

B=A-bc"

2T (PA+ATP)x <0 ze€K
2T (P(A=bc") + (A —bc")T' Pz <0z € R"\ K.
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X A _ previous results on this topic. In particular many simitbeas
Maximum of x , can be found in [5], [6].
Remark 1:The condition (4) is a generalisation of the fre-
guency condition of the Kalman-Yakubovich-Popov (KYP)
lemma. Indeed, suppose th@t= R", thenQ = CU —C
whereC = {z : 27¢ > 0}. In this cas&* = {\c¢ : A > 0},

Region: K
and so the conditiom € C* in Condition 2 of the theorem
X, is equivalent tov = Ac¢ for some\ > 0. Thus the frequency
condition (4) becomes
Mini f
e 1+ (14 M) Re ¢ (jwl — A)"'b >0
Threshold on x for all w € R. This implies the usual KYP condition, and

hence in this case the result of Theorem 1 reduces to the
classical KYP theorem.

Remark 2:The classical version of the KYP lemma has
been extended many times. For instance, starting with the
paper of [7], several authors have proposed new constrained

Lyapunov function for such a switched system requires tH@rmulations. Of particular note in this direction is a re-

solution of the problem addressed in this paper. This {SeNt Paper by Iwasaki and Hara [8] in which the authors

depicted in Fig. 2. Note that this argument applies to an9eneralllse the lemma by investigating the manner in which

state-dependent switching problem where we are studyir?ﬁgnsm’“nts on the frequency domain inequality (FDI) affec
t

linear systems using a Lyapunov functidf(z) and where e corresponding linear matrix inequality (LMI). Our main
VV (rz) is parallel toVV (z) for all > 0 and allz € R™. result is of a similar spirit to that of lwasaki and Hara;
We then have the following result [3]. however, motivated by a problem in the design of switched

Theorem 1:Let Q = C U (—C) where C is a convex systems, we impose constraints on the LMI and investigate

polyhedral cone satisfying (2). The following conditiomea the consequences of these on the FDIs. o
equivalent: To summarise, the main result says that there is a joint

1) there exists a positive definite matri® satisfying qugdrati(_: LyapunO\_/ functiqn (JQLF) fQH’A_bC.T ) in the
PA+ ATP < 0 and the constraint condition regme if and only if there is a common quadratic Lyap_unov
function (CQLF) for the paifA4, A — b(c +v)T) wherew is
(Px, Az) < (Pxz,b){c,z) for all nonzeroz € Q; (3) Some vector irC*. Namely,
(@) UQLF) there exists a positive definiteP =

Fig. 1. Partitioning of the state space.

2) there is a vectov € C* such that PT = 0 such that ATP + PA < 0 and
1+Re(c+v)T(ij—A)7lb> 0 4) T ((A—bcT)TP+P(A—bcT))3: < 0 for all
nonzerox € ;
for all w € R. (b) (CQLF) if and only if there exists a positive definite

A full proof of this result in given in [3]. Here we briefly P, = P > 0 such thatA”P, + PLA < 0 and (A —

note that the derivation borrows from, and extends, our bw™)T Py + P (A — bw”) < 0 wherew = ¢+ v and
c,v areinCt.

If the positivity condition (2) is not satisfied in the cofe
then it is still possible to find a constrained multi-dimemsil
frequency domain condition giving necessary and sufficient
conditions for the existence @?, but the constraints become
more complicated and onerous to check.

Region: R™K I1l. EXAMPLES: SYSTEMS WITHOUT PARAMETER
UNCERTAINTY

We now illustrate the use of our main result by means of
several examples where the parameters are fixed and known.
First we illustrate a case where no JQLF exists.

Example 1 (Nonexistence &f for n = 2): Suppose that

~0.3 1.8 ~1.3 —0.2
A= < -1 02 )’B_ ( ~1.3 —04 )

_ _ 3T T _ T _
Fig. 2. Equivalent partitions as in Fig. 1 taking into accoseale invariance and B = A 20 , where b = ( 1 T0'3 ) and ¢’ =
of the linear system and symmetry of the Lyapunov functidme Tegion(2 ( 1 2 ) Letz; = ( -1 09 ) andzs = ( -05 1 )
is the entire darkened region. and let the regiorf be characterised by the set of vectors




{az1 + Bro |, 8 € Randa,8 > 0}. Let Q = CU —C,
noting that the boundary d? is the pair of lines parallel to
1 andzs passing through the origin, as depicted in Fig. 3
The positivity condition (2) is satisfied by this constrocti
From the main result, a necessary and sufficient condition fi
the existence of a positive definite matdx which satisfies
AT P+ PA < 0 and the constraint condition (3) is that there
exists a vectow € C* such that

1+ Rec’ (jwl — A)7'b + Rev” (jwl — A)™'b >0

for all w € R. Since the positive linear span of the two
vectorsh{ = (0.9 1) andhl =( -1 —0.5) is the
dual cone, ieC™ = {61hy + d2hs | 1,02 € R anddy, de >
0}, then we can rewrite the necessary and sufficient conditic
as there exist some real constafitsio > 0 such that

2
1+Rec” (jwI—A)"'0+>  d.Reh! (jwI—A)"'b >0 (5)

a=1

for all w € R. SubstitutingA4, b, ¢ and h, (wherea
1,2) into (5) and using the fact thdte ¢’ (jwl — A)~'b =
—cT(A? + w?I)~ 1 Ab gives

Yo + d1y1 + da2y2 > 0, (6)

where

yo =14 Rec! (jwl — A)~'b
i ( —1.64w” + 2.5752

w — 3.47w? + 3.0276
y1 :=Reh{ (jwl — A)"'b=— (

)

—0.724w? + 1.05096

wt —3.47w2 + 3.0276)
0.23w? — 0.2001

wt —3.47w2 + 3.0276> '

The functions of frequency)y, y1 and yo are shown in

Figs. 4, 5 and 6, respectively. (A magnified sectionyef

is depicted in Fig. 7.)

w = 1, for instance, no combination @f, > > 0 can exist

Y2 :=Re h (jwl — A)~'b = — (

\ X,
X, 0
1
g, 0
-1
2
2 -1 0 1 2
&
Fig. 3. Example 1: partitioning of the state space.

Fig. 4. The functionyy.
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From the figures, it is clear that a.

Fig. 5. The functiony; .

such that (5) holds (since, at this frequengy,y1, y2 < 0).
Thus, a positive definite matriX’ satisfying the required
constraints does not exist.

Now we give an example where a JQLF exists.

Example 2 (Existence d? for n = 2): ConsiderA, B, b
and ¢ as given in Example 1. Suppose, however, that the
region  is defined by the vectors{ = ( 0.1 1 ) and
#l = (1 0.1 ), as shown in Fig. 8, using a construction
which is otherwise the same as that in Example 1. The
positive linear span of the vectots = ( —0.1 1 ) and
hi = (1 —0.1)is now the dual cone and so a necessary
and sufficient condition for the existence of a positive defin
matrix P which satisfiesA” P + PA < 0 and the constraint
condition (3) is that there exist some real constanig, > 0



2
x
0
1 / Q
—2b /
-4t é 0 //—;—'
2 | 2
6}
-85 1 //
—10} : . . /
~12 i i i i i -2
-3 -2 -1 0 1 2 3 -2 -1 0 1 2
S

Fig. 6. The functionys. Fig. 8.

Example 2: partition of the state space.

0.1

L L L L 2 i i i i i
0.9 0.95 1 1.05 11 1.15

Fig. 7. A magnified section of the functiog. Fig. 9. The new functiony;.

such that (6) holds for alb € R, where state-dependent switched system has a CQLF. Since one must

0.334w? — 0.74994 search over the entire core" to find this related system,
wt —3.47w2 + 3.0276 at first glance this result may appear to be difficult to use as
—0.964w? + 1.64256 > a stability verification tool. Indeed, one might ask if it wer

y1 :=Reh! (jul — A)"'b=— (

N T/, -1y . . .
y2 :==Rehy (jwl — A)" b= — <w4 34702 1 3.0276 not in fact preferable to solve the problem of interest using

the S-procedure in conjunction with an LMI solver [3], [9].

andyy is the same as in Exal_mp!e 1. The new functpns q]:|owever, apart from the theoretical insights to be gleaned
frequencyy, andy, are shown in Figs. 9 and 10, reSpectIdefrom our results, Theorem 1 can provide the basis for an

In this case, since, > 0 over those frequency intervals gfoctive design procedure for uncertain switched systems
wherey, < 0, ad, may be chosen such that (6) holds (whergs e now describe. To see this we now interpret Theorem
02 is chosen appropriately). Thus, a positive definite matri , 5 g|ightly different manner. Recall that Theorem 1 state
P sgtisfying the required constraints must exist. Indeech su “A JOLF exists if one can find a vectar in the positive
abris 1 —0.95 polar C*, such that the paird, A — b(c+v)? has a CQLF”

< _0.95 i.8 ) Suppose that this condition is satisfied, with- v = w.
Now suppose that the entries of the vectoare uncertain
and that the true vector is in faét By Theorem 1 we know
IV. UNCERTAIN SWITCHED SYSTEMS that a JQLF will exist provided we can finglin C* such
Theorem 1 can be interpreted as saying that a JQLF exigt&t ¢ + ¢ = w. In this way we can use the dual cone in
for the state-dependent switched system if a related noa-constructive manner to build an uncertainty region around



Uy + & = —0.3, and provided that the matrid — b¢” is
Hurwitz stable over the entire uncertainty range.

Example 4:Suppose that we wish to design an expo-
nentially stable switched system wheée is the closed
nonnegative orthant iR, and where

0 1 0o 0 O
0 0 1 0 0
0
1

A= 0 0 0 1
0 0 0 0
-1 -4 -9 -9 —4

with the vectom fixed andb” = [0.1,0.1,0.1,0.1,0.1]. Note
thatC*™ = C in this case. Suppose now that the veatds
uncertain; that is each entry in the vectosatisfiesc, <
¢; < ¢;. For example we may takeé < ¢; < 1 fori =1,2
and0 < ¢; < 2 otherwise. We wish to ensure that a joint
Lyapunov function exists for the system irrespective of the

Fig. 10. The new function. unknown (but fixed) value of. We achieve this by invoking
our main result. From our main theorem, we know that the
¢ such that a JQLF exists for the true, but unknown, ﬁxegystem
parametef. To see this consider the following control design &= A(z)z, A(z) € {A, A= bc"}, )
strategy. will have a JQLF provided that for somee C the matrix
(A) Givenc, pick av € C*. Setw = ¢+ v. productA(A—b(c+wv)") has no negative eigenvalue. Since

(B) Now pick A (assuming it exists) such that bothand ¢ is bounded above by? = [1,1,2,2,2] we know that the
A — bw™ are Hurwitz and have a CQLF, and such thavectorv = w — ¢ lies in C for any uncertainc satisfying
A —bcT is also Hurwitz. the above inequalities. Furthermore, it is easily verifieal t

(C) Now consider a perturbation of the vector ¢ = ¢+  both A and A —bw’ are Hurwitz stable, and that the product
dc. The set of vectors € C* such thaté + o = w  of these matricesi(A — bw?) has no negative eigenvalues.
defines an uncertainty region for the veat@uch that a Thus the conditions of our theorem are satisfied, and we can
JQLF exists for the original (uncertain) switched systenapply the results to deduce existence of a joint Lyapunov
providedA — bé” is Hurwitz in the uncertainty region. function. Thus, the following statements are true.
Tools to ensure this latter requirement can be borrowedi) The dynamic systems$ = Az andi = (A — bwT)x

from robust stability theory. have a CQLF.
The following examples illustrate the above observation.(ii) The system (7) is exponentially stable for all fixed
Example 3:Suppose that:Y = (1 0 ) anda} = vectorsc which lie in the uncertainty range and for

(1 1) so that the regiorC is characterised by the set which A — be™ is Hurwitz.
of vectors {az; + fBz2|a,3 € Randa, > 0} and For example, note that far™ = [0.99,0.99,0,0.99, 2], the
Q = C U —C. The positive linear span of the vectorsmatrix A —bc™ is Hurwitz and the matrixA(A — bc”) has

hf = (0 1)andhf = (1 —1) is the dual cone, negative eigenvalues. Thus it follows that no CQLF exists

ie: Ct = {yh1 +nha|v,n € R andv,n > 0}. Let for & = A:z _andi: = (A —bc")x whereas a JQLF does exist
for the original system.
12 —-20 —-16 —-34
A= 12 _17 ,B = 9 _99 > V. RELATED CONDITIONS IN THE LITERATURE

An interesting observation regarding Theorem 1 is that it
b = (28 10 )andc” = ( 1 0.5 ), where the matrices gives a solution to a state dependent switching problem (for
A and B are Hurwitz, B = A — bc” and the positivity which there is no common quadratic Lyapunov function),
condition (2) is satisfied. Note that there does not exist i terms of the existence of a common quadratic Lyapunov
positive definite matrix> which satisfiesA” P+PA < 0and  function for a related problem. This seems a very strange
BT P4+ PB < 0 since the matrixA B has real negative eigen- result. Our main purpose here in this section is to note that
values; however, there exists a positive definite maffix such reductions, although not well known, are a feature of
which satisfiesd” P+ PA < 0 and the constraint condition classical stability theory. An example of another resikirtg
(3) since, for instance, if we choosé = (1 —0.8 ) € this form is the classical SISO Popov criterion [10]. The
C*, thenA(A — (c+v)T) has no real negative eigenvaluespPopov criterion arises in the study of Lure’ systems:
Suppose that there is some uncertainty associated with the .~ Aw+b
bottom entry of the vectoe, denotedé” = [, &]. Then, v TI b
we also may deduce the existence of a JQLF for the original y = ¢
system provided we can find anothére C* such that u = —k(y)



where A is ann x n matrix, b, ¢ are vectorsy is a scalar LMI and investigate the implications of this constraint the
and where the functiok(y) is nonlinear but time-invariant. FDI, taking into account the additional effect of parameter
A sulfficient condition for the absolute stability of this 85 uncertainty. In our example the nonnegative orthant wad use
(via a Lure’-Postnikov Lyapunov function and assumifg)  to construct the switching region, however our main result i
is sector bounded ifD, 1)) is thatA and A—bc” are Hurwitz — applicable to problems where switching is governed by any
and there exists a strictly positive € R such that convex polyhedral cone.
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