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Abstract— Recent results on quadratic stability of state-
dependent switched linear systems are reviewed and applied
to the problem of state-dependent switching with parameter
uncertainty. Several examples are provided to illustrate the
method, both as a means of determining stability of such
systems, and also as a tool for designing stable switched systems
in the presence of uncertainty.

I. I NTRODUCTION

We consider the problem of designing state-dependent
switching systems subject to parameter uncertainty. Unlike
many of the problems considered in the switched systems
literature, the switching rule considered in this paper is
governed by afixed partitionof the state-space which cannot
be manipulated in order to achieve a stabilising switching
law [1]. To be specific, we consider models where the
state-space is partitioned into two regions, namely a closed
double convex pointed cone inRn and its complement,
with different dynamics operating in each region, and where
the goal is to find criteria that will ensure the stability of
the resulting nonlinear system. Such problems may arise,
for example, in rollover prevention systems in automotive
control where an emergency action is initiated if the roll
angle exceeds some critical value and the load transfer ratio
is greater than unity [2]. Furthermore the dynamics operating
in each region are subject to parameter uncertainty. Stability
of this system class will be analysed by invoking a result that
determines the existence of a quadratic Lyapunov function
(QLF) which is decreasing along every trajectory of the
system [3]. The result is illustrated by means of several
examples.

II. M AIN RESULT

Our basic objective is to deduce exponential stability of
the switched system

ẋ = A(x)x, A(x) ∈ {A, B}, (1)

where A and B are Hurwitz matrices, where switching is
orchestrated by a partition of the state-space that is fixed
a-priori, and where the matrixB is subject to parameter
uncertainty. Our specific objective here is to consider the
case whenB is a rank-1 perturbation ofA:

B = A − bcT
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for someb, c ∈ R
n, where(A, b) is controllable and(A, c) is

observable. Parameter uncertainty arises through uncertainty
in the location of the vectorc. Our method is to use a
quadratic Lyapunov function to deduce the stability of the
nonlinear system (1). The partition ofRn which governs
switching has the following specific form. LetC be a convex
polyhedral cone inRn, and letC+ be its positive polar (also
known as the dual cone) defined byC+ = {y : yT x ≥
0 for allx ∈ C}. ThenC+ is also a convex polyhedral cone
[4]. We will assume thatc is in C+, that is

cT x ≥ 0 for all x ∈ C. (2)

The regionΩ is defined asΩ = C ∪ (−C). Then we wish
to determine the existence of a matrixP = PT > 0 such
that AT P + PA < 0 and xT

(

BT P + PB
)

x < 0 for all
x 6= 0 ∈ Ω.

Before proceeding we note that such problems are well
motivated and arise frequently in practice, and often more
general partitions ofRn can be reformulated in this manner.
To make this point clearer, we depict in the plane the type
of switching problem that is of interest (see Figs. 3 and 8).
Recall, we wish to design a dynamic system of the form

ẋ =

{

Ax x ∈ R
n

(A − bcT )x x ∈ Ω

such that the closed loop is exponentially stable, where
the regionΩ is symmetric with respect to the origin. Such
systems arise where the control system has a normal mode
of operation; and an emergency mode that may be activated
based on some other external signal. Another less obvious,
but perhaps more compelling motivation, for addressing
this type of model arises in situations where the switching
hyperplanes do not pass through the origin. Such a situation
is depicted graphically in Fig. 1. In Fig. 1, the maximum
and minimum ofx2 might for example represent actuator
constraints, and the threshold onx1 the actual switching
logic. In this situation, we might look for a QLFV (x) =
xT Px satisfying

xT (PA + AT P )x < 0 x ∈ K

xT (P (A − bcT ) + (A − bcT )T P )x < 0 x ∈ R
n \ K.

However sinceK contains the origin, scaling invariance
requires thatxT (PA + AT P )x < 0 for all x ∈ R

n. Similar
considerations imply thatxT (P (A−bcT )+(A−bcT )T P )x <

0 for all x ∈ Ω, whereΩ is the smallest subset ofR
n which

containsR
n \ K and is invariant under re-scalingx 7→ λx

for all λ 6= 0. Thus the question of existence of a quadratic
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Fig. 1. Partitioning of the state space.

Lyapunov function for such a switched system requires the
solution of the problem addressed in this paper. This is
depicted in Fig. 2. Note that this argument applies to any
state-dependent switching problem where we are studying
linear systems using a Lyapunov functionV (x) and where
∇V (rx) is parallel to∇V (x) for all r > 0 and allx ∈ R

n.
We then have the following result [3].

Theorem 1:Let Ω = C ∪ (−C) where C is a convex
polyhedral cone satisfying (2). The following conditions are
equivalent:

1) there exists a positive definite matrixP satisfying
PA + AT P < 0 and the constraint condition

〈Px, Ax〉 < 〈Px, b〉〈c, x〉 for all nonzerox ∈ Ω; (3)

2) there is a vectorv ∈ C+ such that

1 + Re (c + v)T (jωI − A)−1b > 0 (4)

for all ω ∈ R.
A full proof of this result in given in [3]. Here we briefly

note that the derivation borrows from, and extends, our
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Fig. 2. Equivalent partitions as in Fig. 1 taking into account scale invariance
of the linear system and symmetry of the Lyapunov function. The regionΩ
is the entire darkened region.

previous results on this topic. In particular many similar ideas
can be found in [5], [6].

Remark 1:The condition (4) is a generalisation of the fre-
quency condition of the Kalman-Yakubovich-Popov (KYP)
lemma. Indeed, suppose thatΩ = R

n, then Ω = C ∪ −C
whereC = {x : xT c ≥ 0}. In this caseC+ = {λc : λ ≥ 0},
and so the conditionv ∈ C+ in Condition 2 of the theorem
is equivalent tov = λc for someλ ≥ 0. Thus the frequency
condition (4) becomes

1 + (1 + λ)Re cT (jωI − A)−1b > 0

for all ω ∈ R. This implies the usual KYP condition, and
hence in this case the result of Theorem 1 reduces to the
classical KYP theorem.

Remark 2:The classical version of the KYP lemma has
been extended many times. For instance, starting with the
paper of [7], several authors have proposed new constrained
formulations. Of particular note in this direction is a re-
cent paper by Iwasaki and Hara [8] in which the authors
generalise the lemma by investigating the manner in which
constraints on the frequency domain inequality (FDI) affect
the corresponding linear matrix inequality (LMI). Our main
result is of a similar spirit to that of Iwasaki and Hara;
however, motivated by a problem in the design of switched
systems, we impose constraints on the LMI and investigate
the consequences of these on the FDIs.

To summarise, the main result says that there is a joint
quadratic Lyapunov function (JQLF) for(A, A− bcT ) in the
regionΩ if and only if there is a common quadratic Lyapunov
function (CQLF) for the pair(A, A− b(c + v)T ) wherev is
some vector inC+. Namely,
(a) (JQLF ) there exists a positive definiteP =

PT > 0 such that AT P + PA < 0 and
xT

(

(A − bcT )T P + P (A − bcT )
)

x < 0 for all
nonzerox ∈ Ω;

(b) (CQLF ) if and only if there exists a positive definite
P1 = PT

1 > 0 such thatAT P1 + P1A < 0 and (A −
bwT )T P1 + P1(A − bwT ) < 0 wherew = c + v and
c, v are inC+.

If the positivity condition (2) is not satisfied in the coneC
then it is still possible to find a constrained multi-dimensional
frequency domain condition giving necessary and sufficient
conditions for the existence ofP , but the constraints become
more complicated and onerous to check.

III. E XAMPLES: SYSTEMS WITHOUT PARAMETER

UNCERTAINTY

We now illustrate the use of our main result by means of
several examples where the parameters are fixed and known.
First we illustrate a case where no JQLF exists.

Example 1 (Nonexistence ofP for n = 2): Suppose that

A =

(

−0.3 1.8
−1 0.2

)

, B =

(

−1.3 −0.2
−1.3 −0.4

)

and B = A − bcT , where bT =
(

1 0.3
)

and cT =
(

1 2
)

. Let xT

1 =
(

−1 0.9
)

andxT

2 =
(

−0.5 1
)

and let the regionC be characterised by the set of vectors



{αx1 + βx2 |α, β ∈ R andα, β ≥ 0}. Let Ω = C ∪ −C,
noting that the boundary ofΩ is the pair of lines parallel to
x1 andx2 passing through the origin, as depicted in Fig. 3.
The positivity condition (2) is satisfied by this construction.
From the main result, a necessary and sufficient condition for
the existence of a positive definite matrixP which satisfies
AT P +PA < 0 and the constraint condition (3) is that there
exists a vectorv ∈ C+ such that

1 + Re cT (jωI − A)−1b + Re vT (jωI − A)−1b > 0

for all ω ∈ R. Since the positive linear span of the two
vectorshT

1 =
(

0.9 1
)

and hT

2 =
(

−1 −0.5
)

is the
dual cone, ie:C+ = {δ1h1 + δ2h2 | δ1, δ2 ∈ R andδ1, δ2 ≥
0}, then we can rewrite the necessary and sufficient condition
as there exist some real constantsδ1, δ2 ≥ 0 such that

1+Re cT (jωI−A)−1b+

2
∑

a=1

δaRehT

a
(jωI−A)−1b > 0 (5)

for all ω ∈ R. SubstitutingA, b, c and ha (where a =
1, 2) into (5) and using the fact thatRe cT (jωI − A)−1b =
−cT (A2 + ω2I)−1Ab gives

y0 + δ1y1 + δ2y2 > 0, (6)

where

y0 :=1 + Re cT (jωI − A)−1b

=1 −

(

−1.64ω2 + 2.5752

ω4 − 3.47ω2 + 3.0276

)

y1 :=Re hT

1 (jωI − A)−1b = −

(

−0.724ω2 + 1.05096

ω4 − 3.47ω2 + 3.0276

)

y2 :=Re hT

2 (jωI − A)−1b = −

(

0.23ω2 − 0.2001

ω4 − 3.47ω2 + 3.0276

)

.

The functions of frequencyy0, y1 and y2 are shown in
Figs. 4, 5 and 6, respectively. (A magnified section ofy2

is depicted in Fig. 7.) From the figures, it is clear that at
ω = 1, for instance, no combination ofδ1, δ2 > 0 can exist
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Fig. 3. Example 1: partitioning of the state space.
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Fig. 4. The functiony0.
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Fig. 5. The functiony1.

such that (5) holds (since, at this frequency,y0, y1, y2 < 0).
Thus, a positive definite matrixP satisfying the required
constraints does not exist.

Now we give an example where a JQLF exists.

Example 2 (Existence ofP for n = 2): ConsiderA, B, b

and c as given in Example 1. Suppose, however, that the
region Ω is defined by the vectorsxT

1 =
(

0.1 1
)

and
xT

2 =
(

1 0.1
)

, as shown in Fig. 8, using a construction
which is otherwise the same as that in Example 1. The
positive linear span of the vectorshT

1 =
(

−0.1 1
)

and
hT

2 =
(

1 −0.1
)

is now the dual cone and so a necessary
and sufficient condition for the existence of a positive definite
matrix P which satisfiesAT P + PA < 0 and the constraint
condition (3) is that there exist some real constantsδ1, δ2 ≥ 0
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Fig. 6. The functiony2.
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Fig. 7. A magnified section of the functiony2.

such that (6) holds for allω ∈ R, where

y1 :=Re hT

1 (jωI − A)−1b = −

(

0.334ω2 − 0.74994

ω4 − 3.47ω2 + 3.0276

)

y2 :=Re hT

2 (jωI − A)−1b = −

(

−0.964ω2 + 1.64256

ω4 − 3.47ω2 + 3.0276

)

and y0 is the same as in Example 1. The new functions of
frequencyy1 andy2 are shown in Figs. 9 and 10, respectively.
In this case, sincey1 > 0 over those frequency intervals

wherey0 < 0, aδ1 may be chosen such that (6) holds (where
δ2 is chosen appropriately). Thus, a positive definite matrix
P satisfying the required constraints must exist. Indeed, such
a P is

(

1 −0.25
−0.25 1.8

)

.

IV. U NCERTAIN SWITCHED SYSTEMS

Theorem 1 can be interpreted as saying that a JQLF exists
for the state-dependent switched system if a related non-
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Fig. 8. Example 2: partition of the state space.
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Fig. 9. The new functiony1.

state-dependent switched system has a CQLF. Since one must
search over the entire coneC+ to find this related system,
at first glance this result may appear to be difficult to use as
a stability verification tool. Indeed, one might ask if it were
not in fact preferable to solve the problem of interest using
the S-procedure in conjunction with an LMI solver [3], [9].
However, apart from the theoretical insights to be gleaned
from our results, Theorem 1 can provide the basis for an
effective design procedure for uncertain switched systems,
as we now describe. To see this we now interpret Theorem
1 in a slightly different manner. Recall that Theorem 1 states:

“A JQLF exists if one can find a vectorv in the positive
polar C+, such that the pairA, A− b(c+ v)T has a CQLF.”

Suppose that this condition is satisfied, withc + v = w.
Now suppose that the entries of the vectorc are uncertain
and that the true vector is in factc̃. By Theorem 1 we know
that a JQLF will exist provided we can find̃v in C+ such
that c̃ + ṽ = w. In this way we can use the dual cone in
a constructive manner to build an uncertainty region around



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

5

Fig. 10. The new functiony2.

c such that a JQLF exists for the true, but unknown, fixed
parameter̃c. To see this consider the following control design
strategy.

(A) Given c, pick a v ∈ C+. Setw = c + v.
(B) Now pick A (assuming it exists) such that bothA and

A− bwT are Hurwitz and have a CQLF, and such that
A − bcT is also Hurwitz.

(C) Now consider a perturbation of the vectorc : c̃ = c +
δc. The set of vectors̃v ∈ C+ such thatc̃ + ṽ = w

defines an uncertainty region for the vectorc such that a
JQLF exists for the original (uncertain) switched system
providedA− bc̃T is Hurwitz in the uncertainty region.
Tools to ensure this latter requirement can be borrowed
from robust stability theory.

The following examples illustrate the above observation.
Example 3:Suppose thatxT

1 =
(

1 0
)

and xT

2 =
(

1 1
)

so that the regionC is characterised by the set
of vectors {αx1 + βx2 |α, β ∈ R andα, β ≥ 0} and
Ω = C ∪ −C. The positive linear span of the vectors
hT

1 =
(

0 1
)

and hT

2 =
(

1 −1
)

is the dual cone,
ie: C+ = {γh1 + ηh2 | γ, η ∈ R andγ, η ≥ 0}. Let

A =

(

12 −20
12 −17

)

, B =

(

−16 −34
2 −22

)

,

bT =
(

28 10
)

andcT =
(

1 0.5
)

, where the matrices
A and B are Hurwitz, B = A − bcT and the positivity
condition (2) is satisfied. Note that there does not exist a
positive definite matrixP which satisfiesAT P+PA < 0 and
BT P +PB < 0 since the matrixAB has real negative eigen-
values; however, there exists a positive definite matrixP

which satisfiesAT P +PA < 0 and the constraint condition
(3) since, for instance, if we choosevT =

(

1 −0.8
)

∈
C+, thenA(A− (c + v)T ) has no real negative eigenvalues.
Suppose that there is some uncertainty associated with the
bottom entry of the vectorc, denotedc̃T = [c̃1, c̃2]. Then,
we also may deduce the existence of a JQLF for the original
system provided we can find anotherṽ ∈ C+ such that

ṽ2 + c̃2 = −0.3, and provided that the matrixA − bc̃T is
Hurwitz stable over the entire uncertainty range.

Example 4:Suppose that we wish to design an expo-
nentially stable switched system whereC is the closed
nonnegative orthant inR5, and where

A =













0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−1 −4 −9 −9 −4













with the vectorb fixed andbT = [0.1, 0.1, 0.1, 0.1, 0.1]. Note
that C+ = C in this case. Suppose now that the vectorc is
uncertain; that is each entry in the vectorc satisfiesc

i
<

ci < c̄i. For example we may take0 < ci < 1 for i = 1, 2
and 0 < ci < 2 otherwise. We wish to ensure that a joint
Lyapunov function exists for the system irrespective of the
unknown (but fixed) value ofc. We achieve this by invoking
our main result. From our main theorem, we know that the
system

ẋ = A(x)x, A(x) ∈ {A, A − bcT }, (7)

will have a JQLF provided that for somev ∈ C the matrix
productA

(

A− b(c+v)T
)

has no negative eigenvalue. Since
c is bounded above bywT = [1, 1, 2, 2, 2] we know that the
vector v = w − c lies in C for any uncertainc satisfying
the above inequalities. Furthermore, it is easily verified that
bothA andA−bwT are Hurwitz stable, and that the product
of these matricesA(A − bwT ) has no negative eigenvalues.
Thus the conditions of our theorem are satisfied, and we can
apply the results to deduce existence of a joint Lyapunov
function. Thus, the following statements are true.
(i) The dynamic systemṡx = Ax and ẋ = (A − bwT )x

have a CQLF.
(ii) The system (7) is exponentially stable for all fixed

vectors c which lie in the uncertainty range and for
which A − bcT is Hurwitz.

For example, note that forcT = [0.99, 0.99, 0, 0.99, 2], the
matrix A − bcT is Hurwitz and the matrixA(A − bcT ) has
negative eigenvalues. Thus it follows that no CQLF exists
for ẋ = Ax andẋ = (A− bcT )x whereas a JQLF does exist
for the original system.

V. RELATED CONDITIONS IN THE LITERATURE

An interesting observation regarding Theorem 1 is that it
gives a solution to a state dependent switching problem (for
which there is no common quadratic Lyapunov function),
in terms of the existence of a common quadratic Lyapunov
function for a related problem. This seems a very strange
result. Our main purpose here in this section is to note that
such reductions, although not well known, are a feature of
classical stability theory. An example of another result taking
this form is the classical SISO Popov criterion [10]. The
Popov criterion arises in the study of Lure’ systems:

ẋ = Ax + bu,

y = cT x,

u = −k(y)



whereA is an n × n matrix, b, c are vectors,u is a scalar
and where the functionk(y) is nonlinear but time-invariant.
A sufficient condition for the absolute stability of this system
(via a Lure’-Postnikov Lyapunov function and assumingk(y)
is sector bounded in(0, 1)) is thatA andA−bcT are Hurwitz
and there exists a strictly positiveα ∈ R such that

1 + Re
{

(1 + jαω)cT (jωIn − A)−1b
}

> 0 ∀ ω ∈ R.

Suppose now that the transfer function is strictly proper.
Then, it follows from the results in [11] that a time-domain
version of the Popov criterion can be obtained from the pos-
itive real condition. This condition is equivalent to requiring
that the systems:

ẋ = Ax; ẋ = B(α)x, (8)

have a CQLF, whereB(α) is a Hurwitz matrix constructed
using c, b, A and α. As with our main result, the original
stability question has been reduced to a CQLF existence
problem for a related switched linear system. This appears to
be an unexplored (and perhaps important) observation as it
suggests that sometimes, complicated stability problems can
be solved by replacing the original nonlinear system with
a related switched system, the quadratic stability of which
implies the non-quadratic stability of the original system.

VI. CONCLUSIONS

In this paper, we presented a solution to the stability prob-
lem for a switched system with parameter uncertainty, by
applying a result which is an extension of the classical KYP
lemma. While previous work in this direction has focused
mainly on the implications for the LMI when one constrains
the FDI in the KYP lemma, in our model we constrain the

LMI and investigate the implications of this constraint forthe
FDI, taking into account the additional effect of parameter
uncertainty. In our example the nonnegative orthant was used
to construct the switching region, however our main result is
applicable to problems where switching is governed by any
convex polyhedral cone.
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