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Abstract— A loss of passivity in the face of certain frequency
dynamics (eg: high frequency dynamics) given an otherwise
passive system leads to the notion of a “mixed” system. A
“mixed” system is one that has a concept of small gain
associated with it over those frequency intervals where passivity
is lost. In this paper, a test for determining “mixedness” for
linear, time-invariant systems is provided and several finite-
gain stability results for interconnections of such systems are
presented. The “mixedness” test involves examining the spectral
characteristics of two Hamiltonian matrices, one associated with
the passive aspects of the system and one associated with the
notion of small gain. The finite-gain stability results are derived
using a dissipative systems framework.

I. I NTRODUCTION

The concept of a “mixed” system arises from a need to
deal with situations where the passivity properties of an
otherwise passive system might be destroyed in the face of
certain frequency dynamics (eg: high frequency dynamics).
A celebrated controversy in adaptive control [1], for in-
stance, depended on the observation that passivity conditions
normally forming part of the hypotheses of the proofs of
convergence of certain adaptive control algorithms shouldnot
be assumed to be valid in practice because high frequency
dynamics often neglected for modelling purposes will always
be present in a real system. Failure of the passivity condition
invalidated the applicability of the associated theorem on
the algorithm convergence to most real-life applications and
left a cloud hanging over the real-life use of the algorithm.
Simulations of [1] confirmed that adverse behaviour could
occur when high frequency dynamics were explicitly taken
into account.

Generally speaking, a linear time-invariant (LTI) system
might be called “mixed” if, over some frequencies, it is
input and output strictly passive (in a sense to be made more
precise later in this paper) and/or, over some frequencies,it
has a gain of less than one (again, in a sense to be made
more precise later); there exist no frequencies over which
the system has neither of these property notions associated
with it. The book [2] (see also [3] and [4]) described tools
for establishing stability of adaptive systems of the type
examined in [1]; that is, where passivity properties hold
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only for low frequency signals. Stability is established if,
additionally (and in a rough manner of speaking), system
gains are small at high frequencies, ie: a small gain property
holds in the frequency band where the passivity condition
fails.

Finite-gain stability results for “mixed” systems intercon-
nected via a simple negative feedback loop were derived
in [5], [6] (and extended to the nonlinear case in the time
domain in [7], [8]) using a dissipative systems framework
[9]–[14]. The objective of this paper is to now present a
necessary and sufficient test for determining whether or not
a given LTI system is mixed. This procedure involves the ex-
amination of the spectral characteristics of two Hamiltonian
matrices, one associated with the potentially passive aspects
of the system and the other associated with the notion of
system small gain. Spectral conditions for positive realness
of transfer function matrices are discussed in [15] and, for
more general frequency domain inequalities, in [16].

Some finite-gain stability results for larger interconnec-
tions of “mixed” systems (which extend on the results
for negative feedback loops obtained in [5], [6]) are also
presented here. These results are derived using a dissipative
systems framework, modified from [12] to allow for the
frequency-dependent nature of the “mixed” systems defini-
tion and are subject to a further condition on the intercon-
nection.

The remainder of this paper is sectioned as follows. The
notion of a “mixed” system is defined further in Section II. In
Section III, state-space descriptions are utilised to compute
two Hamiltonian matrices and derive associated results which
are required for the test of “mixedness” which is discussed
in Section IV. Section V contains the finite-gain stability
results for interconnections of mixed systems. Examples are
provided in Section VI.

Notation

The results of this paper are concerned with LTI systems
viewed in the frequency domain. We consider vector-valued
frequency domain signalsf ∈ L2(jR), where L2(jR)
denotes the real frequency domain Lebesgue space in which

‖f‖ =

{

1

2π

∫

∞

−∞

f∗(jω)f(jω)dω

}
1

2

and the superscript(·)∗ denotes the complex conjugate
transpose.L2(jR) is a Hilbert space under the inner product

〈f, g〉 =
1

2π

∫

∞

−∞

g∗(jω)f(jω)dω.



R denotes the set of proper real rational transfer function
matrices. For a transfer function matrixG ∈ R, G∗(s) is de-
fined to meanG(−s)T . L∞ is a Banach space of matrix- (or
scalar-) valued functions that are essentially bounded onjR.
The Hardy space,H∞, is the closed subspace ofL∞ with
functions that are analytic and bounded in the open right-half
plane. In other words,H∞ is the space of transfer functions
of stable, LTI, continuous-time systems.RH∞ denotes the
subspace ofH∞ whose transfer function matrices are proper
and real rational. The notationA ∈ RHm×n

∞
indicates such

matrices withm rows andn columns.

II. D EFINITION OF A “M IXED” SYSTEM

We consider a causal system with square transfer function
matrix M ∈ RHm×m

∞
and denote the system’s input and

output signals ase ∈ L2(jR) andy ∈ L2(jR), respectively.
We also consider a closed frequency interval[a, b], where
a, b ∈ R.

Property 1: A causal system with transfer function matrix
M ∈ RHm×m

∞
is said to be input and output strictly passive

over the frequency interval[a, b] if there existk, l > 0 such
that

−kM(jω)∗M(jω) + M(jω)∗ + M(jω) − lI ≥ 0 (1)

for all ω ∈ [a, b].
In addition, we can say that the system is input strictly

passive over the frequency interval[a, b] if Property 1 is sat-
isfied with k = 0; output strictly passive over the frequency
interval[a, b] if Property 1 is satisfied withl = 0; and passive
over the frequency interval[a, b] if Property 1 is satisfied with
k = l = 0.

Property 2: Define the system gain over the frequency
interval [a, b] as

ǫ := min{ǭ ∈ R+ : −M(jω)∗M(jω) + ǭ2I ≥ 0

for all ω ∈ [a, b]}.

The system is said to have a gain of less than one over the
frequency interval[a, b] if ǫ < 1.

Observe that Properties 1 and 2 requirea andb to be finite.
In the following, this requirement is relaxed.

Property 3: A causal system with transfer function matrix
M ∈ RHm×m

∞
is said to be input and output strictly passive

over the frequency interval(−∞, b], [a,∞) or (−∞,∞) if
there existk, l > 0 such that (1) holds for allω ∈ (−∞, b],
[a,∞) or (−∞,∞), respectively.

Property 4: Define the system gain over the frequency
interval (−∞, b], [a,∞) or (−∞,∞) as

ǫ := inf{ǭ ∈ R+ : −M(jω)∗M(jω) + ǭ2I ≥ 0 for

all ω ∈ (−∞, b], [a,∞) or (−∞,∞), respectively}.

The system is said to have a gain of less than one over the fre-
quency interval(−∞, b], [a,∞) or (−∞,∞), respectively,
if ǫ < 1.

Motivated by the above properties, we now define a
“mixed” system as follows.

Definition 5: A causal system with transfer function ma-
trix M ∈ RHm×m

∞
is said to be “mixed” if, for each

frequencyω ∈ R, either: (i)−kM(jω)∗M(jω)+M(jω)∗+
M(jω) − lI ≥ 0; or (ii) −M(jω)∗M(jω) + ǫ2I ≥ 0; or
both (i) and (ii) hold. The constantsk, l > 0 and ǫ < 1 are
independent ofω.

Examples of “mixed” systems include systems with the
transfer functions

m1(s) =
3s + 2

s + 5
, m2(s) =

2s − 1

2s + 4

and

m3(s) =
3

(s + 1)(s + 2)
.

The systems described by the transfer functions

m4(s) =
2s − 3

s + 4

and

m5(s) =
10

(s + 1)(s + 2)

are not mixed. To illustrate, consider the Nyquist diagrams
of m2(s) andm5(s) as shown in Figs. 1 and 2. From Fig. 1,
it is evident that there exists some frequencyΩ such that the
system described by the transfer functionm2(s) is input and
output strictly passive over(−∞,−Ω] and [Ω,∞) and has
a gain of less than one over the frequency interval[−Ω, Ω].
For instance, one could letΩ = 3. This is not the case for
the system described by the transfer functionm5(s).

Our aim is to provide an outline of a necessary and
sufficient test for determining whether or not a given LTI
system is mixed. For single-input, single-output (SISO), LTI
systems, the construction of such a test is in one sense
redundant as one can, for example, examine the properties
of the candidate system graphically via its Nyquist plot.
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Fig. 1. Nyquist diagram ofm2(s).
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However, analytic tests of mixedness for multi-input, multi-
output (MIMO), LTI systems (and eventually, tests for non-
linear systems) are potentially more useful. In this paper,we
consider the MIMO, LTI case.

III. H AMILTONIAN MATRICES

Suppose that we are given a causal system with stable,
square transfer function matrixM = C(sI − A)−1B + D

which is described by the equations

ẋ = Ax + Bě, x(t0) = x0,

y̌ = Cx + Dě,

wherex(t) ∈ Rn, ě(t) ∈ Rm is the inverse Fourier transform
of e(jω), y̌(t) ∈ Rm is the inverse Fourier transform of
y(jω) andA ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m

with A Hurwitz. Suppose that the constantsk, l, ǫ ∈ R are
fixed and let

G1(jω) := −kM(jω)∗M(jω) + M(jω)∗ + M(jω) − lI

and

G2(jω) := −M(jω)∗M(jω) + ǫ2I.

Assume thatX1 := −kDT D + DT + D − lI and X2 :=
−DT D+ǫ2I are invertible and letY := I−kD. Then, after
some calculations (see [17]) which follow the technique of
[15, proof of Lemma 1]), it can be shown that

det(Gi(jω)) = det(Xi) det{(jωI − A)−1}

det{(jωI + AT )−1} det(jωI + Hi) (2)

for i = 1, 2, whereH1 :=
(

−A + BX−1
1 Y T C −BX−1

1 BT

kCT C + CT Y X−1
1 Y T C AT − CT Y X−1

1 BT

)

andH2 :=
(

−A − BX−1
2 DT C −BX−1

2 BT

CT C + CT DX−1
2 DT C AT + CT DX−1

2 BT

)

.

The following result will be required for the “mixedness”
test.

Lemma 6:Suppose thatk, l ∈ R (ǫ ∈ R) and assume that
X1 (X2) is invertible. The matrixG1(jω) (G2(jω)) has no
zero eigenvalues overω ∈ [a, b] if and only if H1 (H2) does
not have any eigenvalues on the imaginary axis between and
including−ja and−jb.

The proof of Lemma 6 (see [17]) utilises (2) and the
assumptions thatX1 and X2 are invertible and thatA is
Hurwitz.

IV. T ESTING FOR“M IXEDNESS”

Given a system state-space description as described in the
previous section, the goal is to determine whether or not
our system is “mixed.” One idea is to consider the transfer
function matrix M(s) that has been constructed from the
state-space data and determine whether or not there exist
k, l > 0 andǫ < 1 such that (i) and/or (ii) from Definition 5
hold for each frequencyω ∈ R. To eliminate an element of
frequency-dependency from the test, however, we can utilise
the state-space data directly and apply Lemma 6.

Therefore, the first step of the test is to computeH1 and
H2 (under the assumptions thatX1 and X2 are invertible)
for somek, l > 0 andǫ < 1 and calculate the eigenvalues of
these matrices. Existences of purely imaginary eigenvalues
indicate those frequencies at whichG1(jω) andG2(jω) have
zero eigenvalues. Importantly, we also note the following:(i)
there existk, l > 0 such thatG1(jω) ≥ 0 for all ω ∈ [a, b]
if and only if M(jω)∗ + M(jω) > 0 for all ω ∈ [a, b];
and (ii) there existsǫ < 1 such thatG2(jω) ≥ 0 for all
ω ∈ [a, b] if and only if −M(jω)∗M(jω) + I > 0 for all
ω ∈ [a, b]. (Alternatively: (i) there do not existk, l > 0 such
that G1(jω) ≥ 0 for all ω ∈ [a, b] if and only if M(jω)∗ +
M(jω) ≯ 0 for all ω ∈ [a, b]; and (ii) there does not exist
ǫ < 1 such thatG2(jω) ≥ 0 for all ω ∈ [a, b] if and only if
−M(jω)∗M(jω) + I ≯ 0 for all ω ∈ [a, b].)

This means that the constantsk, l and ǫ can frequently
be eliminated from the test. That is, we can often setk =
l = 0 and ǫ = 1 when applying Lemma 6; particularly,
under the assumptions thatdet(M(j∞)∗+M(j∞)) 6= 0 and
det(−M(j∞)∗M(j∞)+I) 6= 0, Definition 5 also becomes:

“A causal system with transfer function matrixM ∈
RHm×m

∞
is said to be “mixed” if, for each frequencyω ∈ R:

either (i)M(jω)∗ +M(jω) > 0; or (ii) −M(jω)∗M(jω)+
I > 0; or both (i) and (ii) hold.”

If there exist frequencies at whichM(jω)∗ + M(jω)
has zero eigenvalues then we divide the frequency range
(−∞,∞) up into intervals with the frequencies correspond-
ing to the zero eigenvalues as the interval endpoints. (If
there exist no frequencies at whichM(jω)∗ + M(jω)
has zero eigenvalues then we leave the frequency range
(−∞,∞) intact and think of it as a single “division.”)
Similarly, a separate set of divisions of the entire frequency



range(−∞,∞) can be made based on the frequencies at
which −M(jω)∗M(jω) + I has zero eigenvalues. (Again,
the frequency range(−∞,∞) is left intact if there exist
no frequencies at which−M(jω)∗M(jω) + I has zero
eigenvalues.) We now have two different sets of frequency
range divisions: Set of Divisions 1 and Set of Divisions 2.

Finally, we check the sign definiteness of the matrix
M(jω)∗ + M(jω) over each interval belonging to Set
of Divisions 1 and the sign definiteness of the matrix
−M(jω)∗M(jω) + I over each interval belonging to Set
of Divisions 2. Testing at one frequency (eg: at the mid-
point) per interval is sufficient. Those intervals over which
M(jω)∗ + M(jω) > 0 and those intervals over which
−M(jω)∗M(jω) + I > 0 are identified and we determine
whether or not there exists some combination of these
intervals that span the entire frequency range; that is, if
M(jω)∗ +M(jω) > 0 and/or−M(jω)∗M(jω)+ I > 0 for
eachω ∈ R then the system is “mixed.” If, for someω ∈ R,
eitherM(jω)∗ + M(jω) ≯ 0 or −M(jω)∗M(jω) + I ≯ 0
then the system is not “mixed.”

V. “M IXED” SYSTEMS INTERCONNECTIONS

Once it is possible to determine whether or not systems
are mixed, finite-gain stability results may be called upon to
examine the properties of interconnections of such systems.
Suppose thatα(ω) is an arbitrary, real, continuous, (even)
function of frequency and, moreover, that0 ≤ α(ω) ≤ 1.

Lemma 7:Suppose that a causal system with transfer
function matrixM ∈ RHm×m

∞
is “mixed.” Then there exists

an α(ω) (as described above) such that

α(ω)[−kM(jω)∗M(jω) + M(jω)∗ + M(jω) − lI]

+ (1 − α(ω))[−M(jω)∗M(jω) + ǫ2I] ≥ 0

for all ω ∈ R.
The proof of Lemma 7 follows from the fact that the sum

of two m×m positive semi-definite matrices is positive semi-
definite, as is any convex combination of two such matrices
[18, page 258]. At frequencies at whichG1(jω) or G2(jω)
are not positive semi-definite, one can setα(ω) or 1−α(ω),
respectively, to 0 or 1, respectively.

Remark 8: If M ∈ RH∞ (ie: the system is SISO), then
the condition in Lemma 7 is an if and only if statement.

Now consider a linear interconnection ofN mixed subsys-
tems (the precise form of the interconnection to be described
in a moment). We integrate each of the inequalities

ei(jω)∗{α(ω)[−kiMi(jω)∗Mi(jω) + Mi(jω)∗ + Mi(jω)

−liI] + (1 − α(ω))[−Mi(jω)∗Mi(jω) + ǫ2i I]}ei(jω) ≥ 0,

where i = 1, . . . , N and ei ∈ L2(jR) is the input to
subsystemi, with respect toω and multiply each integral by
1

2π
to obtain the following condition on the interconnection:

there exists anα(ω) such that

〈yi, qi(ω)yi〉 + 2〈yi, si(ω)ei〉 + 〈ei, ri(ω)ei〉 ≥ 0 (3)

for all ei ∈ L2(jR), for eachi = 1, . . . , N , where

qi(ω) := −(kiα(ω) + 1 − α(ω))

si(ω) := α(ω)

ri(ω) := ǫ2i (1 − α(ω)) − liα(ω)

andki, li > 0 and ǫi < 1. The interconnection is described
by

ei = ui −

N
∑

j=1

Hijyj , i = 1, . . . , N,

where yi ∈ L2(jR) is the output of subsystemi, ui ∈
L2(jR) is an external input andHij is a constant matrix.
Writing

e :=







e1

...
eN






, y :=







y1

...
yN






andu :=







u1

...
uN






,

the interconnection description may be written more com-
pactly as

e = u − Hy, (4)

whereH is a matrix with block entriesHij . DenoteQ̃ :=
diag(q1(ω)I, . . . , qN (ω)I), S̃ := diag(s1(ω)I, . . . , sN(ω)I)
and R̃ := diag(r1(ω)I, . . . , rN (ω)I) and let

Q̄ := Q̃ + HT R̃H − S̃H − HT S̃,

noting thatQ̄T = Q̄. We have the following result, modified
to allow for frequency-dependent̃Q, S̃ and R̃, from [12,
Theorem 1].

Theorem 9:An interconnection of “mixed” subsystems,
with input u and outputy, as described above, is finite-gain
stable if Q̄ is negative definite.

Refer to [17] for the proof of Theorem 9. In [5, Theorem
6] and [6, Theorem 1], it was shown that, for

H =

(

0 I

−I 0

)

,

the matrixQ̄ is guaranteed to be negative definite and thus
the interconnection, depicted in Fig. 3, is always finite-gain
stable. This is a generalisation of the small gain theorem and
the passivity theorem, albeit here, restricted to LTI systems.

Let us now denoteK := diag(k1I, . . . , kNI), L :=
diag(l1I, . . . , lNI) and E := diag(ǫ21I, . . . , ǫ2NI). The fol-
lowing result is an alternative sufficient condition for finite-
gain stability. The condition is frequency-independent (see
[17] for the proof).

M
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u
2

u
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+

-

+

+

y
1

e
2

y
2

e
1

M
2

Fig. 3. A negative feedback interconnection.



Theorem 10:An interconnection of “mixed” subsystems,
with input u and output y, as described above, is
finite-gain stable if there exists a positive definite matrix
P = diag(p1I, . . . , pNI) such thatPK + PH + HT P +
HT PLH > 0 andP − HT PEH > 0.

Remark 11:Finite-gain stability of the interconnection,
depicted in Fig. 3, is guaranteed via the alternative sufficient
condition presented in Theorem 10 as there exists aP =
diag(p1I, p2I) > 0 such that

(

(p1k1 + p2l2)I (p1 − p2)I
(p1 − p2)I (p1l1 + p2k2)I

)

> 0

and
(

(p1 − p2ǫ
2
2)I 0

0 (p2 − p1ǫ
2
1)I

)

> 0.

For instance, settingp1 = p2, the condition reduces to
(

(k1 + l2)I 0
0 (l1 + k2)I

)

> 0

and
(

(1 − ǫ22)I 0
0 (1 − ǫ21)I

)

> 0

which is satisfied sinceki, li > 0 andǫi < 1 for i = 1, 2.

VI. EXAMPLES

The following two examples illustrate various aspects of
the test for mixedness.

Example 1:(SISO “mixed” system) Given the state-space
dataA = −2, B = 2, C = −1.75 andD = 1.5 from which
the transfer function

m6(s) =
3s − 1

2s + 4

can be constructed, and settingk = l = 0 andǫ = 1, we get

H1 =

(

0.83̇ −1.3̇
1.02083̇ −0.83̇

)

and

H2 =

(

−2.2 3.2
−2.45 2.2

)

(noting that m6(j∞)∗ + m6(j∞) 6= 0 and
m6(j∞)∗m6(j∞) 6= 1). The matrix H1 has two purely
imaginary eigenvalues,±0.8165i. Breaking the frequency
range (−∞,∞) up into the intervals(−∞,−0.8165],
[−0.8165, 0.8165] and [0.8165,∞) and examining the sign
definiteness ofm6(jω)∗ + m6(jω) at a single frequency
point from the interiors of each of these intervals (eg:
at ω = −1, 0, 1) yields m6(−j1)∗ + m6(−j1) > 0,
m6(j0)∗ + m6(j0) ≯ 0 andm6(j1)∗ + m6(j1) > 0. Thus,
the system is passive over(−∞,−0.8165] and [0.8165,∞)
and a system gain of less than one over[−0.8165, 0.8165]
is required in order for it to be “mixed.”

The matrix H2 has two purely imaginary eigen-
values, ±1.732i. Observing the sign definiteness of
−m6(jω)∗m6(jω) + 1 at a single frequency point from
the interiors of each of the intervals(−∞,−1.732],
[−1.732, 1.732] and [1.732,∞) (eg: atω = −2, 0, 2) yields
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Fig. 4. Nyquist diagram ofm6(s).

−m6(−j2)∗m6(−j2) + 1 ≯ 0, −m6(j0)∗m6(j0) + 1 > 0
and −m6(j2)∗m6(j2) + 1 ≯ 0. The system has a gain
of one over the frequency interval[−1.732, 1.732] and
[−0.8165, 0.8165] is a subset of this interval. Thus, the
system is “mixed.” See Fig. 4 for an illustration of the
system’s frequency response.

Example 2:(MIMO system, not “mixed”) Given the state-
space dataA = [-3 -2 0 0 0 0; 1 0 0 0 0 0; 0 0 -5 0 0 0; 0 0 0 -7
-3 0; 0 0 0 4 0 0; 0 0 0 0 0 -1], B = [2 0; 0 0; 4 0; 0 2; 0 0; 0 1],
C = [0 1.5 0 0 1.625 0; 0 0 -3.25 0 0 1] andD = [0 0; 3 0]
from which the transfer function matrix

M7(s) =





3
(s + 1)(s + 2)

13
(s + 3)(s + 4)

3s + 2
s + 5

1
s + 1





may be constructed, and settingk = l = 0 and ǫ = 1, we
obtainH1 andH2 (see Fig. 5) noting thatdet(M7(j∞)∗ +
M7(j∞)) 6= 0 anddet(−M7(j∞)∗M7(j∞) + I) 6= 0. The
matrix H1 has two purely imaginary eigenvalues,±0.5959i.
Breaking the frequency range(−∞,∞) up into the intervals
(−∞,−0.5959], [−0.5959, 0.5959] and[0.5959,∞) and ex-
amining the sign definiteness ofM7(jω)∗ + M7(jω) at a
single frequency point from the interiors of each of these in-
tervals (eg: atω = −1, 0, 1) yieldsM7(−j1)∗+M7(−j1) ≯

0, M7(j0)∗+M7(j0) > 0 andM7(j1)∗+M7(j1) ≯ 0. Thus,
the system is passive over[−0.5959, 0.5959] and a system
gain of less than one over(−∞,−0.5959] and [0.5959,∞)
is required in order for it to be “mixed.”

The matrix H2 does not have any purely imaginary
eigenvalues which means that the sign definiteness of
−M7(jω)∗M7(jω)+ I will remain the same over the entire
frequency range(−∞,∞). Since−M7(j0)∗M7(j0) + I is
an indefinite matrix, the system does not have a gain of less
than one over(−∞,∞) and is hence not “mixed.”

VII. C ONCLUSIONS ANDFUTURE WORK

A test for determining whether or not a causal, stable,
MIMO, LTI system is “mixed” was developed. Implemen-
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
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
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3 2 -2.1̇6 0 0 0.̇6 0 0 0 -1.̇3 0 -0.6̇
-1 0 0 0 0 0 0 0 0 0 0 0
0 0 0.̇6 0 0 1.̇3 0 0 0 -2.̇6 0 -1.3̇
0 1 0 7 4.08̇3 0 -1.3̇ 0 -2.6̇ 0 0 0
0 0 0 -4 0 0 0 0 0 0 0 0
0 0.5 0 0 0.541̇6 1 -0.6̇ 0 -1.3̇ 0 0 0
0 0 0 0 0 0 -3 1 0 0 0 0
0 0 -1.625 0 0 0.5 -2 0 0 -1 0 -0.5
0 -1.625 0 0 -1.76041̇6 0 2.16̇ 0 -0.6̇ 0 0 0
0 0 0 0 0 0 0 0 0 -7 4 0
0 0 -1.76041̇6 0 0 0.541̇6 0 0 0 -4.08̇3 0 -0.541̇6
0 0.5 0 0 0.541̇6 0 -0.6̇ 0 -1.3̇ 0 0 -1
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and
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







































3 2 -2.4375 0 0 0.75 0.5 0 1 0 0 0
-1 0 0 0 0 0 0 0 0 0 0 0
0 0 0.125 0 0 1.5 1 0 2 0 0 0
0 0 0 7 3 0 0 0 0 -4 0 -2
0 0 0 -4 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 -2 0 -1
0 0 0 0 0 0 -3 1 0 0 0 0
0 2.25 0 0 2.4375 0 -2 0 0 0 0 0
0 0 -1.3203125 0 0 0.40625 2.4375 0 -0.125 0 0 0
0 0 0 0 0 0 0 0 0 -7 4 0
0 2.4375 0 0 2.640625 0 0 0 0 -3 0 0
0 0 0.40625 0 0 -0.125 -0.75 0 -1.5 0 0 -1


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Fig. 5. The Hamiltonian matrices.

tation of the test requires little more than determining the
purely imaginary eigenvalues of two Hamiltonian matrices.
Once “mixedness” is determined, finite-gain stability results
for interconnections of such systems may be implemented
provided that the required conditions on the interconnection
are met. The case of strictly proper systems is to be dealt
with in a future publication (see [17]).
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