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Abstract— A loss of passivity in the face of certain frequency only for low frequency signals. Stability is established if
dynamics (eg: high frequency dynamics) given an otherwise additionally (and in a rough manner of speaking), system
passive system leads to the notion of a “mixed” system. A gaing are small at high frequencies, ie: a small gain prgpert

“mixed” system is one that has a concept of small gain - LS .
associated with it over those frequency intervals where pasvity holds in the frequency band where the passivity condition

is lost. In this paper, a test for determining “mixedness” fa fails.
linear, time-invariant systems is provided and several firte- Finite-gain stability results for “mixed” systems interco

gain stability results for interconnections of such system are  pected via a simple negative feedback loop were derived
presented. The “mixedness” test involves examining the speal in [5], [6] (and extended to the nonlinear case in the time

characteristics of two Hamiltonian matrices, one associad with d inin I71. 18 . dissipai t f K
the passive aspects of the system and one associated with the omain in [7], [8]) using a dissipative systems framewor

notion of small gain. The finite-gain stability results are cerived ~ [9]-[14]. The objective of this paper is to now present a

using a dissipative systems framework. necessary and sufficient test for determining whether or not
a given LTI system is mixed. This procedure involves the ex-
|. INTRODUCTION amination of the spectral characteristics of two Hamiloni

The concept of a “mixed” system arises from a need tgnatrices, one associated with the potentially passivecspe
deal with situations where the passivity properties of aff the system and the other associated with the notion of
otherwise passive system might be destroyed in the face ®fstem small gain. Spectral conditions for positive resdne
certain frequency dynamics (eg: h|gh frequency dynamics?:f transfer function matrices are discussed in [15] and, for
A celebrated controversy in adaptive control [1], for in-more general frequency domain inequalities, in [16].
stance, depended on the observation that passivity congiti  Some finite-gain stability results for larger interconnec-
normally forming part of the hypotheses of the proofs ofions of “mixed” systems (which extend on the results
convergence of certain adaptive control algorithms shoatd for negative feedback loops obtained in [5], [6]) are also
be assumed to be valid in practice because high frequeneiesented here. These results are derived using a dissipati
dynamics often neglected for modelling purposes will alsvaysystems framework, modified from [12] to allow for the
be present in a real system. Failure of the passivity cantiti frequency-dependent nature of the “mixed” systems defini-
invalidated the applicability of the associated theorem ofion and are subject to a further condition on the intercon-
the algorithm convergence to most real-life applicationd a Nection.
left a cloud hanging over the real-life use of the algorithm. The remainder of this paper is sectioned as follows. The
Simulations of [1] confirmed that adverse behaviour coul@iotion of a “mixed” system is defined further in Section II. In
occur when high frequency dynamics were explicitly takefection lll, state-space descriptions are utilised to asep
into account. two Hamiltonian matrices and derive associated resultshwhi

Generally speaking, a linear time-invariant (LTI) systenfre required for the test of “mixedness” which is discussed
might be called “mixed” if, over some frequencies, it isin Section IV. Section V contains the finite-gain stability
input and output strictly passive (in a sense to be made mof@sults for interconnections of mixed systems. Examples ar
precise later in this paper) and/or, over some frequenities Provided in Section VI.
has a gain of less than one (again, in a sense to be malqgtat'
more precise later); there exist no frequencies over which 'on
the system has neither of these property notions associated he results of this paper are concerned with LTI systems
with it. The book [2] (see also [3] and [4]) described toolsviewed in the frequency domain. We consider vector-valued
for establishing stability of adaptive systems of the typérequency domain signaly € L>(jR), where £o(jR)
examined in [1]; that is, where passivity properties holdlenotes the real frequency domain Lebesgue space in which
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‘R denotes the set of proper real rational transfer function Definition 5: A causal system with transfer function ma-
matrices. For a transfer function matixe R, G*(s) isde- trix M € RHL*™ is said to be “mixed” if, for each
fined to mearG(—s)?. £, is a Banach space of matrix- (or frequencyw € R, either: (i) —kM (jw)* M (jw) + M (jw)* +
scalar-) valued functions that are essentially boundegitan M (jw) — 11 > 0; or (i) —M (jw)*M (jw) + €3I > 0; or
The Hardy spaceH.., is the closed subspace gf, with  both (i) and (ii) hold. The constanis ! > 0 ande < 1 are
functions that are analytic and bounded in the open righft-handependent of..

plane. In other wordsi -, is the space of transfer functions Examples of “mixed” systems include systems with the
of stable, LTI, continuous-time systent®H ., denotes the transfer functions

subspace of{,, whose transfer function matrices are proper 3s+2 26 — 1
and real rational. The notatioA € RH..*" indicates such ma(s) = 515’ ma(s) = 95 1 4
matrices withm rows andrn columns. g
an
II. DEFINITION OF A“MIXED"” SYSTEM 3(s) = 3

. . . o (s+1D)(s+2)
We consider a causal system with square transfer function ( I )
matrix M € RH™*™ and denote the system's input andThe systems described by the transfer functions

output signals as € L(jR) andy € L2(jR), respectively. 926 — 3
We also consider a closed frequency interjalb], where ma(s) = s 14
a,beR.
Property 1: A causal system with transfer function matrix and 10
M e RHZ2*™ is said to be input and output strictly passive ms(s) = m
over the frequency intervak, ] if there existk, ! > 0 such
that are not mixed. To illustrate, consider the Nyquist diagrams

. ' . . of mo(s) andms(s) as shown in Figs. 1 and 2. From Fig. 1,
—kM (jw)" M (jw) + M (jw)* + M(jw) =11 >0 (1) itis evident that there exists some frequeficguch that the
system described by the transfer functien(s) is input and

for all w € [a, b]. : ;
In addition, we can say that the system is input strictl;? utput strictly passive ovef—oo, —€2] and[©), 0o0) and has

. : ) . a gain of less than one over the frequency intefvdl, Q.
passive over the frequency interval b] if Property 1 is sat- . a7
D . i . ; For instance, one could I€2 = 3. This is not the case for
isfied with k& = 0; output strictly passive over the frequencythe svstem described by the transfer functio
interval[a, b] if Property 1 is satisfied with = 0; and passive M y P(s).

; ; ; . ; Our aim is to provide an outline of a necessary and
over the frequency interv@d, b] if Property 1 is satisfied with . - .
E=1=0 a Y ol pery sufficient test for determining whether or not a given LTI
Property 2: Define the system gain over the frequencySyStern is mixed. For smgle—mput, smgle—output_ (SISa)L L
interval [a, b] as systems, the construction of such a test is in one sense

redundant as one can, for example, examine the properties
¢:=min{e € Ry : —M(jw)*M(jw) + I >0 of the candidate system graphically via its Nyquist plot.

for all w € [a, b]}.

The system is said to have a gain of less than one over the
frequency intervala, b] if € < 1. 1

Observe that Properties 1 and 2 requir@ndb to be finite. 0sl
In the following, this requirement is relaxed. ' o
Property 3: A causal system with transfer function matrix 0.6 "
M € RHZ*™ is said to be input and output strictly passive o4l Réal 0,615
over the frequency intervdl-oo, b], [a, 00) or (—oc, 00) if 2 Frequeney (radisec): 3
there existk,! > 0 such that (1) holds for alb € (—cc, b], < 02
[a,00) or (—oco, 00), respectively. g o
Property 4: Define the system gain over the frequency g
interval (—oo, b], [a,00) or (—oo, 00) as = 0z P——
-0af i,
e :=inf{e € Ry : =M (jw)* M (jw) + &1 > 0 for e e
all w € (—o0, b], [a, 00) Or (—o0,00), respectively. ' -Q
-0.81
The system is said to have a gain of less than one over the fre
quency interval(—oco, b], [a,o0) or (—o0,00), respectively, = ~05 0 05 1
if € <1, Real Axis

Motivated by the above properties, we now define a
“mixed” system as follows. Fig. 1. Nyquist diagram ofnz (s).



and Hy :=

4 —— ~A-BX;'DTC ~BX,'BT
i CTC+CTDX;'DTC AT+ CTDX; BT
3r Imag: 2.36 ]
g Freauency (taflsedy 141 The following result will be required for the “mixedness”
2r System: m5 1 teSt
i 0520 ‘ Lemma 6:Suppose that,! € R (e € R) and assume that
K2 Frequency (rad/sec): -2.76 . . . .
2 Y. \ X1 (X32) is invertible. The matrixG; (jw) (G2(jw)) has no
2 o | zero eigenvalues over € [q,b] if and only if H, (H2) does
E) not have any eigenvalues on the imaginary axis between and
E = including —ja and —j5b
-1t - 1 ) .
\Iiyl%sg% The proof of Lemma 6 (see [17]) utilises (2) and the
2| Frgc'i’neney<rau/sec>: 276 ] assumptions tha(; and X, are invertible and thatd is
" System: m5 HurWItZ
-3+ Real:‘ 17.4497016 4
Frequency (radisec): 141 IV. TESTING FOR“M IXEDNESS’
Ao 1 2 3 1 s Given a system state-space description as described in the
Real Axis previous section, the goal is to determine whether or not
our system is “mixed.” One idea is to consider the transfer
Fig. 2. Nyquist diagram ofns (s). function matrix M (s) that has been constructed from the

state-space data and determine whether or not there exist

k,l > 0 ande < 1 such that (i) and/or (ii) from Definition 5
However, analytic tests of mixedness for multi-input, mult hold for each frequency € R. To eliminate an element of
output (MIMO), LTI systems (and eventually, tests for nonfrequency-dependency from the test, however, we canaitilis
linear systems) are potentially more useful. In this pawer, the state-space data directly and apply Lemma 6.

consider the MIMO, LTI case. Therefore, the first step of the test is to comp#te and
Hs (under the assumptions that; and X, are invertible)
I1l. HAMILTONIAN MATRICES for somek,l > 0 ande < 1 and calculate the eigenvalues of

Fg,ese matrices. Existences of purely imaginary eigengalue
indicate those frequencies at whi€h (jw) andG; (jw) have
zero eigenvalues. Importantly, we also note the follow(fig:
there existk,! > 0 such thatG;(jw) > 0 for all w € [a, b]
& = Az + Be, x(tog) = xo, if and only if M(jw)* + M(jw) > 0 for all w € [a,b];
g = Cax + De, and (ii) th_ere exists < 1 such thatG;(jw) > 0 for all
w € [a,b] if and only if —M (jw)*M (jw) + I > 0 for all
wherez(t) € R", &(t) € R™ is the inverse Fourier transform w € [a, b]. (Alternatively: (i) there do not exist, ! > 0 such
of e(jw), y(t) € R™ is the inverse Fourier transform of that Gy (jw) > 0 for all w € [a, b] if and only if M (jw)* +
y(jw) andA € R™*", B € R™*™, C € R™*", D € R™*™ M (jw) # 0 for all w € [a,b]; and (ii) there does not exist
with A Hurwitz. Suppose that the constartg,e € R are e < 1 such thatGs(jw) > 0 for all w € [a, b] if and only if
fixed and let —M(jw)*M (jw) + I # 0 for all w € [a,b].)
This means that the constanits | and ¢ can frequently
G1(jw) = —kM(jw)* M (jw) + M (jw)" + M(jw) =1 pe eliminated from the test. That is, we can often iset
I = 0 ande = 1 when applying Lemma 6; particularly,

Suppose that we are given a causal system with stab
square transfer function matrix/ = C(sI — A)~'B + D
which is described by the equations

and ) e ) under the assumptions théit (M (joo)*+ M (joo)) # 0 and
Go(jw) = =M (jw)" M (jw) + 1. det(—M (joo)* M (joo)+1) # 0, Definition 5 also becomes:
Assume thatX; := —kDTD + DT + D — I and X, := “A causal system with transfer function matrix/ <

—DTD+¢€%I are invertible and leY := I —kD. Then, after R_Hzlom,n is sgid to be “mixed” if, for_.each frgquenc;{e R:
some calculations (see [17]) which follow the technique ofither () M (jw)* +M (jw) > 0; or (ii) —M (jw)* M (jw) +

: I > 0; or both (i) and (ii) hold.”
15, proof of Lemma 1]), it can be shown that . , )
[15. p D W If there exist frequencies at which/ (jw)* + M (jw)

det(Gy(jw)) = det(X;) det{(jwl — A)~1} has zero eigenvalues then we divide the frequency range
(—o0, 00) up into intervals with the frequencies correspond-
ing to the zero eigenvalues as the interval endpoints. (If
there exist no frequencies at which/ (jw)* + M (jw)
has zero eigenvalues then we leave the frequency range
~-A+BX{WYTC -BX{'BT (—o0,00) intact and think of it as a single “division.”)
( ECTC +CTYX;'YTC AT —CTyX;'BT ) Similarly, a separate set of divisions of the entire frequyen

det{(jwI + AT) 'Y det(jwl + H;) (2)

fori=1,2, whereH; :=



range (—oo,00) can be made based on the frequencies &br all ¢; € £2(jR), for eachi = 1,..., N, where
which —M (jw)*M (jw) + I has zero eigenvalues. (Again,

the frequency rangé—oo, cc) is left intact if there exist 6(w) = = (kia(w) +1 - a(w))
no frequencies at which-M (jw)*M (jw) + I has zero si(w) = a(w)
eigenvalues.) We now have two different sets of frequency ri(w) == (1 — a(w)) — Lio(w)

range divisions: Set of Divisions 1 and Set of Divisions 2.
Finally, we check the sign definiteness of the matri

M(jw)* + M(jw) over each interval belonging to Set N

of Divisions 1 and the sign definiteness of the matrix e :ui—ZHiljyﬁ i=1,...,N,

—M(jw)*M (jw) + I over each interval belonging to Set i=1

of Divisions 2. Testing at one frequency (eg: at the mid\'/vhere yi € Lo(jR) is the output of subsystem u; €

pomt) per mteryal is sufficient. Thosg intervals over vﬂnc L2(jR) is an external input andf;; is a constant matrix.
M(jw)* + M(jw) > 0 and those intervals over which Writing

—M(jw)*M (jw) + I > 0 are identified and we determine

whether or not there exists some combination of these €1 h U1
intervals that span the entire frequency range; that is, if e:= : Y = : andu := : ,
M (jw)* + M (jw) > 0 and/or—M (jw)* M (jw) + I > 0 for
eachw € R then the system is “mixed.” If, for some € R, . . o .
either M (jw)* + M(jw) # 0 or —M (jw)*M(jw)+ I % 0 the interconnection description may be written more com-
then the system is not “mixed.” pactly as

andk;,l; > 0 ande; < 1. The interconnection is described

EN YN uN

e=u— Hy, (4)

V. "M IXED” SYSTEMS INTERCONNECTIONS where H is a matrix with block entried?;;. DenoteQ :=

dia I,... 1), S := dia I,..., I
Once it is possible to determine whether or not systeng:“?(}%l:(:)diég(r;(gg)(?)_ ) rN(w)II) iié(ﬁ)t sn(@))

are mixed, finite-gain stability results may be called upmn t

examine the properties of interconnections of such systems Q:=Q+HT"RH-SH - HTS,
Suppose thatv(w) is an arbitrary, real, continuous, (even)noting thatQ” = Q. We have the following result, modified
function of frequency and, moreover, tHak a(w) < 1. to allow for frequency-depende®, S and R, from [12,

Lemma 7:Suppose that a causal system with transfefpeorem 1].
function matrix )M/ € RHZ.*™ is “mixed.” Then there exists  Theorem 9:An interconnection of “mixed” subsystems,

ana(w) (as described above) such that with input« and outputy, as described above, is finite-gain
stable if ) is negative definite.
a(w)[—kM (jw)" M (jw) + M (jw)* + M (jw) — U] Refer to [17] for the proof of Theorem 9. In [5, Theorem
+ (1 — a(w)[-M(jw)* M (jw) + 1] > 0 6] and [6, Theorem 1], it was shown that, for
0 I
for all w € R. H_<—I 0),

The proof of Lemma 7 follows from the fact that the sum o ) o
of two m x m positive semi-definite matrices is positive semithe matrix@ is guaranteed to be negative definite and thus

definite, as is any convex combination of two such matricd§€ interconnection, depicted in Fig. 3, is always finiténga
[18, page 258]. At frequencies at which (jw) or G (jw) stable. This is a generalisation of the small gain theorednh an
are not positive semi-definite, one can aéb) or 1 — a(w), the passivity theorem, albeit he_re, restricted to LTI syste
respectively, to O or 1, respectively. Let us now denotek .= .(j'ag(leI""’QkNI)’ L=
Remark 8:1f M € RH, (ie: the system is SISO), then d'ag(lll’ e ’Z{VI) and £ = d|aq§1_1, » "GNI_),' The f(_)l'.
the condition in Lemma 7 is an if and only if statement. lowing result is an alternative sufficient condition for fa
Now consider a linear interconnection 8fmixed subsys- gain stability. The condition is frequency-independerie(s

tems (the precise form of the interconnection to be desuiribéﬂ] for the proof).
in a moment). We integrate each of the inequalities

. . . . . u € y
ei(jw) {a(w)[=kiMi(jw)" M;(jw) + Mi(jw)" + Mi(jw) ! M !
—lil] + (1 = a(w))[-M;(jw) " Mi(jw) + € 1] }ei(jw) > 0,

wherei = 1,...,N ande;, € L2(jR) is the input to +
subsystem, with respect tav and multiply each integral by +
% to obtain the following condition on the interconnection: | M

there exists am(w) such that

Yo 2| e u

(yi, i (W)ys) + 2(yi, si(w)es) + (e, ri(w)e;) >0 3) Fig. 3. A negative feedback interconnection.



Theorem 10:An interconnection of “mixed” subsystems, System: m6

Real: 0.498

with input « and outputy, as described above, is 1 ‘ Imag: 0.864

Frequency (rad/sec): .73 |

finite-gain stable if there exists a positive definite matrix
P = diagp:1,...,pnI) such thatPK + PH + HTP + /
HTPLH >0andP — HTPEH > 0. o5l [Sremms

Remark 11:Finite-gain stability of the interconnection,  mag sz

depicted in Fig. 3, is guaranteed via the alternative seffici el A
condition presented in Theorem 10 as there exist® &

diag(p11,p2I) > 0 such that
System: mé
(pik1 +p2lo)l  (p1—p2)l -0 : Fmﬁ:gﬁ_%,%ii‘(’”
(pl — pQ)I (plll + kaQ)I —0.5F  Frequency (rad/sec): -0.816
and \
( (p1 — p2e3) 1 0

Imaginary Axis

2 > O -1 L . System: mé
0 (P2 = prei)] ) -1 05 0. ag: 0864 15

Rea| AXis Frequency (rad/sec): -1.73

For instance, setting; = p», the condition reduces to

(kl 4 12)1 0 Fig. 4. Nyquist diagram ofng(s).
( 0 (ll+k2)l>>0
and G-ar o —me(—j2) ms(—j2) + 1 # 0, —me(j0)*me(j0) + 1 > 0
( 0 2 1— e > >0 and —mg(j2)*me(j2) + 1 ¥ 0. The system has a gain
(I =€) of one over the frequency intervgH1.732,1.732] and
which is satisfied sincé;,!; > 0 ande¢; < 1 for i =1, 2. [-0.8165,0.8165] is a subset of this interval. Thus, the

system is “mixed.” See Fig. 4 for an illustration of the
system'’s frequency response.
The following two examples illustrate various aspects of Example 2:(MIMO system, not “mixed”) Given the state-
the test for mixedness. spacedatal = [-3-20000;100000;00-5000;000-7
Example 1:(SISO “mixed” system) Given the state-space3 0;000400;00000-1], B =[20;00;40;02;00;0 1],
datad = -2, B=2,C = —-1.75andD = 1.5 from which ¢ =[01.500 1.6250;0 0 -3.250 0 1] andD = [0 0;3 0]

VI. EXAMPLES

the transfer function from which the transfer function matrix
3s—1 3 13
me(s) = % + 4 Mi(s) = (s +31)§_s2+ 2) (s+ 3)1(8 +4)
can be constructed, and settihg= 1 = 0 ande = 1, we get ss—+5” s+1
0.83 ~-1.3 may be constructed, and settitg= [ = 0 ande = 1, we
0 = ( 1.02083 —0.83 > obtain H, and H, (see Fig. 5) noting thadet (M7 (joo)* +

M7(joo)) # 0 anddet(—M7(joo)* M7(joo) + I) # 0. The
99 39 matrix H; has two purely imaginary eigenvalues().5959:.

Hy = < _945 29 ) Breaking the frequency rande-co, oo) up into the intervals

(—00, —0.5959], [~0.5959, 0.5959] and[0.5959, 0o ) and ex-
(noting that mg(joo)* + me(joc) # 0 and amining the sign definiteness dff;(jw)* + M7 (jw) at a
me(joo)*me(joo) # 1). The matrix H; has two purely single frequency point from the interiors of each of these in
imaginary eigenvalues0.8165i. Breaking the frequency tervals (eg: aty = —1,0, 1) yields My (—j1)* + My(—j1) #
range (—oo,00) up into the intervals(—oo, —0.8165], 0, M7(j0)*+M;(j0) > 0 andM;(j1)*+M;(j1) # 0. Thus,
[—0.8165,0.8165] and [0.8165, 00) and examining the sign the system is passive ovér0.5959,0.5959] and a system
definiteness ofmg(jw)* + me(jw) at a single frequency gain of less than one ovér-oo, —0.5959] and[0.5959, cc)
point from the interiors of each of these intervals (egis required in order for it to be “mixed.”

and

at w = —1,0,1) yields mg(—j1)* + mg(—j1) > 0, The matrix H, does not have any purely imaginary
me(j0)* +me(j0) # 0 andme(j1)* + me(j1) > 0. Thus, eigenvalues which means that the sign definiteness of
the system is passive ovéroo, —0.8165] and [0.8165,00)  —M,(jw)* M7(jw) + I will remain the same over the entire
and a system gain of less than one oje0.8165,0.8165]  frequency rangé—oc, 0o). Since —M;(j0)* M7(50) + I is

is required in order for it to be "mixed.” an indefinite matrix, the system does not have a gain of less

The matrix H, has two purely imaginary eigen- than one ovef—oc,o0) and is hence not “mixed.”
values, £1.732i. Observing the sign definiteness of
—me(jw)*me(jw) + 1 at a single frequency point from
the interiors of each of the interval§—oo, —1.732], A test for determining whether or not a causal, stable,
[—1.732,1.732] and [1.732, 00) (eg: atw = —2,0,2) yields MIMO, LTI system is “mixed” was developed. Implemen-

VII. CONCLUSIONS ANDFUTURE WORK



H,y

3 2 2.5 0 0 06 0O 0 O 13 0 -06
-1 0 0 0 0 0 0O 0 O 0 0 0
0 0 06 0 0 13 0O 0 © 26 0 -13
0 1 0 7 4.08 0 13 0 -26 0 0 0
0 0 0 -4 0 0 0O 0 O 0 0 0
_| o 0.5 0 0 0.546 1 06 0 -13 0 0 0 and
0 0 0 0 0 0 3 1 o0 0 0 0
0 0 -1.625 0 0 0.5 2 0 O -1 0 -05
0 -1.625 0 0 -1.76041 O 216 0 -06 0 0 0
0 0 0 0 0 0 0O 0 © 7 4 0
0 0 -1.7604%6 0O 0 0545 0 0 0 -408 0 -0.54%
0 0.5 0 0 0.546 0 06 0 -13 0 0 -1
3 2 -2.4375 0 0 0.75 05 0 1 0 0
-1 0 0 0 0 0 0 0 0 0 0 O
0 0 0.125 0 0 1.5 1 0 2 0 0 O
0 0 0 7 3 0 0 0 0 4 0 -2
0 0 0 -4 0 0 0 0 0 0 0 O
H, — 0 0 0 0 0 1 0 0 0 2 0 -1
0 0 0 0 0 0 -3 1 0 0 0 O
0 225 0 0 2.4375 0 -2 0 0 0 0 O
0 0 -1.3203125 0 0 0.40625 24375 0 -0125 0 0 P
0 0 0 0 0 0 0 0 0 7 4 0
0 2.4375 0 0 2.640625 0 0 0 0 30
0 0 0.40625 0 0 0125 075 0 -15 0 O jL

Fig. 5. The Hamiltonian matrices.

tation of the test requires little more than determining the
purely imaginary eigenvalues of two Hamiltonian matrices.
Once “mixedness” is determined, finite-gain stability ftesu
for interconnections of such systems may be implemented
provided that the required conditions on the interconoecti
are met. The case of strictly proper systems is to be dea[g,]
with in a future publication (see [17]).
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