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Abstract— The question of existence of joint quadratic Lya-
punov functions (QLFs) for state-dependent, switched dynam-
ical systems is given a preliminary geometrical treatment in
this paper. The joint QLF problem for a switched system and
a collection of regions defined by state vectors that determine
when switching occurs consists of finding nonempty intersec-
tions of convex sets of QLFs. The existence of a joint QLF
guarantees switched system stability. Necessary and sufficient
conditions for the existence of a joint QLF are obtained for a
two-dimensional problem.

I. INTRODUCTION

A great interest in stability problems arising from the study
of switched and hybrid systems has arisen in recent years
[1]–[5]. The study of stability for switched systems is more
difficult than the study of stability for continuous systems or
discrete systems due to the complicated behavior caused by
interaction between continuous and discrete dynamics. Lya-
punov stability theory still plays a dominating role [6], [7].
A common Lyapunov function for all subsystems comprising
the switched system guarantees stability under an arbitrary
switching law [3].

In certain situations, it is not necessary to guarantee
stability for every possible switching signal and a number
of authors have considered questions related to the stability
of switched systems under restricted switching regimes.
One important example of this is state-dependent switching,
where the rule that determines when a switch in system
dynamics may occur is determined by the value of the state
vector. A genetic regulatory network in which switching
occurs when the concentration of a regulatory protein crosses
a threshold provides an example of this type of switching
system [8]. Internet congestion control provides another
example [8].

The stability problems associated with a state-dependent
switching regime can loosely be divided into two categories.
In the first of these, the state space is partitioned by a number
of hypersurfaces that determine the mode switches in the
system dynamics and the problem is to analyze the stability
of the time-varying system defined in this way. In the second
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category of problem, one is concerned with finding state-
dependent rules for switching between a family of unstable
systems that result in stability. It is the former class of
problem that is the topic of this paper.

Specifically, via a geometrical treatment, we address the
problem of determining global asymptotic stability of a
second order, state-dependent switched system with linear
subsystem dynamics, given a partitioning of the state-space
into closed, double conic regions that determine which of
the linear subsystem components is active. Guaranteeing
global asymptotic stability is achieved by finding necessary
and sufficient conditions for the existence of a quadratic
Lyapunov function (QLF) which is decreasing along every
trajectory of the system. While second order systems are
considered, it is expected that some of the algebraic results
derived in this paper will prove useful in analyzing the
higher-dimensional case at a later stage.

Notation

The fields of real and complex numbers are denoted by
R and C, respectively. Let C− denote the set of complex
numbers with real part strictly less than zero (ie: C− defines
the open left half of the complex plane). The set of n ×m
real matrices is denoted by Rn×m and Rn denotes the set
of n × 1 real column vectors. Let aij denote the element
corresponding to the ith row and jth column of a matrix
A. A matrix A ∈ Rn×n is called Hurwitz if its spectrum
lies in C−. Let Sn(R) denote the vector space of n × n
real symmetric matrices. The notations A > 0, A ≥ 0,
A < 0 and A ≤ 0 refer to a positive definite, a positive
semi-definite, a negative definite and a negative semi-definite
matrix, respectively. A matrix is called positive definite if
xT Ax > 0 for every nonzero x ∈ Rn. Let Pn(R) denote the
set of n× n real symmetric positive definite matrices.

II. BACKGROUND

In this section, we review the QLF existence problem.
We are seeking to determine global asymptotic stability of a
state-dependent, switched dynamical system

ẋ = A(x)x, A(x) ∈ A := {A1, A2, . . . , AN}
where Ai with i ∈ {1, 2, . . . , N} are constant matrices in
R2×2. It is assumed that the matrices Ai are Hurwitz. First,
we recall the common quadratic Lyapunov function (CQLF)
existence problem.



A. Common QLF Problem

For a P ∈ Pn(R), the function V (x) = xT Px defines a
QLF for the dynamical system ẋ = Ax if PA + AT P < 0.
(We will henceforth often abuse notation and say that P is a
QLF for A, meaning that V (x) is a QLF for ẋ = Ax.) It is
well known that A is a Hurwitz matrix if and only if there
exists a QLF for A [9, Theorem 3.6]. We define the set of
all such QLF matrices as

L(A) := {P ∈ Pn(R) |PA + AT P < 0}.
Then L(A) is an open convex pointed cone in the space of
real symmetric n× n matrices.

The CQLF existence problem involves finding conditions
which guarantee the existence of a common QLF for a set of
Hurwitz matrices {A1, . . . , AN}. The existence of a CQLF
implies stability of the dynamical system ẋ = Aτ(t)x where
τ : R+ 7→ {1, . . . , N} is any switching function. Referring
to the cones defined above, an equivalent formulation is to
find conditions for a nonempty intersection of the cones
L(A1), . . . ,L(AN ). A solution to the CQLF existence prob-
lem for two-dimensional systems exists as follows (see [10]
for a proof and for an extension to more than two matrices).

Theorem 1: [10] Let A1, A2 ∈ R2×2 be two Hurwitz
matrices. A necessary and sufficient condition for the systems
ẋ = A1x and ẋ = A2x to have a CQLF is that the matrices
A−1

2 A1 and A2A1 do not have real negative eigenvalues. An
equivalent condition is that all convex combinations of A1

and A2, and of A1 and A−1
2 , are Hurwitz.

B. General Joint QLF Problem

Suppose that Ω is a closed double cone in Rn such that if
x ∈ Ω then λx ∈ Ω for all λ ∈ R. Given A ∈ Rn×n, define
the QLF set for the pair (A,Ω) as follows:

L(A,Ω) := {P ∈ Pn(R) |xT (PA + AT P )x < 0,

∀x ∈ Ω, x 6= 0}.
If A is Hurwitz, then L(A,Ω) is nonempty. The general joint
QLF problem for a collection of matrices Ai and regions
Ωi is to find conditions for a nonempty intersection of the
sets {L(Ai, Ωi)}. If ∪iΩi = Rn, then the existence of a
joint QLF implies exponential stability of the state-dependent
switching system ẋ = A(x)x, where A(x) ∈ {A1, . . . , AN},
with A(x) = Ai implying x ∈ Ωi.

C. Problem Set-Up

We aim to obtain analytical necessary and sufficient con-
ditions for the existence of a joint QLF for the following
case. Set n = 2 and N = 2 and let x1, x2 be two vectors in
R2. Characterize Ω1 and Ω2 as follows:

Ω1 := {x = αx1 + βx2 |α and β ∈ R, αβ ≥ 0} (1)

and let Ω2 = R2. Then Ω1 is the set of all linear combina-
tions of x1 and x2 with the restriction that the coefficients
are either both non-positive or both non-negative. We will
describe this region as a closed double cone in R2 defined by
the vectors x1 and x2. The boundary of Ω1 is the pair of lines

parallel to x1 and x2 passing through the origin, as depicted
in Fig. 1. Given two Hurwitz matrices A1, A2 ∈ R2×2,
A(x) ∈ {A1, A2} may be equal to either A1 or A2 for all
vectors x ∈ Ω1 and is equal to A2 everywhere else. Given
this setup, we are interested in determining necessary and
sufficient conditions for the existence of a P ∈ P2(R) such
that the following are simultaneously satisfied:
(i) xT

(
AT

1 P + PA1

)
x < 0, ∀x ∈ Ω1, x 6= 0;

(ii) AT
2 P + PA2 < 0.

If (i) and (ii) hold, then the pairs (A1,Ω1) and (A2,R2) are
said to have a joint QLF.

III. EXTENSIONS OF CQLF RESULTS

The following question arises: How does the CQLF exis-
tence problem stated in Theorem 1 translate to a joint QLF
problem when one of the sets L(A) is replaced by a set
L(A,Ω)? First, a review of the geometry of convex cones
generated by Lyapunov functions is provided.

A. Geometry of Convex Cones

The boundary of L(A) consists of symmetric positive
semi-definite matrices P for which PA + AT P ≤ 0. If
P0 is in the boundary of L(A) and x0 is in the kernel of
P0A + AT P0, then

xT
0 (AT P0 + P0A)x0 = 2xT

0 P0Ax0 = 0.

The set of all symmetric matrices Q for which xT
0 QAx0 =

0 defines a linear subspace H in the space of symmetric
matrices. Since H does not intersect the QLF set L(A) but
does intersect its boundary, it follows that H is tangent to
L(A). We will view H as a hyperplane in the vector space
R3. This is possible because the space of real symmetric
matrices is isomorphic to Rn(n+1)/2 and it is an inner product
space when equipped with the Hilbert-Schmidt inner product:
〈A,B〉 = TrAT B. It is natural to define the hyperplane H
by its normal vector in Rn(n+1)/2 and to write this normal
vector as a matrix. The normal is computed as follows: we
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Fig. 1. Partition of the state space.



write the equation for H as

0 = 2xT
0 QAx0 = xT

0 (QA + AT Q)x0

= TrQ(Ax0x
T
0 + x0x

T
0 AT )

where in the last equality we used the cyclic property of
the trace. This last term precisely states that H is the set of
vectors Q in Rn(n+1)/2 which are orthogonal to the vector
Ax0x

T
0 + x0x

T
0 AT . Thus, Ax0x

T
0 + x0x

T
0 AT is the normal

vector to H . Furthermore, since H is tangent to the set L(A),
then this set must lie on one side of H; particularly, Ax0x

T
0 +

x0x
T
0 AT points away from L(A).

For two-dimensional systems, every tangent plane to the
set L(A) has the form described above with a normal vector
of the form AxxT +xxT AT for some vector x in the plane.
This is because if P is on the boundary of L(A) then
PA+AT P must be negative semi-definite and hence in two
dimensions it must have a one-dimensional kernel. Then the
situation described above applies and leads to the tangent
plane of the stated form. In higher dimensional systems the
kernel may be more than one-dimensional, in which case
other tangent planes are possible.

B. Separating Tangential Hyperplane

If A1 and A2 are Hurwitz matrices for which L(A1) and
L(A2) are disjoint then A1 and A2 do not have a CQLF.
Since L(A1) and L(A2) are convex sets, there is a separating
hyperplane between these sets [11] and this hyperplane may
be chosen to be a simultaneous tangent plane for both sets.
Supposing that this tangent plane has the form described in
Section III-A then there are vectors x and y such that the
normal vector for the plane is A1xxT + xxT AT

1 at L(A1)
and A2yyT +yyT AT

2 at L(A2). Furthermore, since the plane
separates the QLF sets, these normals must be oppositely
oriented, hence there is a positive constant k such that

A1xxT + xxT AT
1 = −k(A2yyT + yyT AT

2 ). (2)

Equivalently, for all symmetric matrices Q ∈ Rn×n, we have

xT QA1x = −kyT QA2y. (3)

The following result allows us to solve this equation.
Lemma 2: [12] Let x, y, u, v be four nonzero vectors in

Rn such that for all symmetric matrices Q ∈ Rn×n, xT Qy =
−kuT Qv with k > 0. Then, either

x = αu for some real scalar α and y = −
(

k

α

)
v, or

x = βv for some real scalar β and y = −
(

k

β

)
u.

Refer to [12] for proof. Applying this result to (3) implies
that either some convex combination of A1 and A2, or of A1

and A−1
2 , is singular. As noted above, this conclusion applies

to two-dimensional systems because every tangent plane has
the required form, thereby recovering the results in [10].

C. Extending CQLF

Suppose that we represent symmetric matrices Q ∈ S2(R)
as points in a plane. We label the coordinates in a (q12, q22)-
plane such that each point defines a symmetric matrix of the
form

Q =
[

1 q12

q12 q22

]
.

The set of symmetric matrices whose (1, 1) entry is nonzero
can be re-scaled to this form and matrices whose (1, 1) entry
is zero lie in the closure of this set. Fig. 2 depicts three points
and the parabola q22 = q2

12. Points on the parabola (eg: Q3)
correspond to positive semi-definite matrices. Points on the
positive side of the locus (eg: Q1) correspond to positive
definite matrices and points on the negative side of the locus
(eg: Q2) correspond to indefinite and negative semi-definite
matrices. It is evident that the set of all positive semi-definite
symmetric matrices is convex. Under the assumption that A
is not a triangular matrix, the projection of a set L(A) in this
two-dimensional representation corresponds to the interior of
an ellipse [10]. It is also evident that this set L(A) is convex.

Consider a set L(A,Ω). Recall that this is the set of
matrices P ∈ P2(R) for which xT PAx < 0 for all nonzero
x ∈ Ω. It immediately follows that this set is convex and
that L(A) is a subset of L(A, Ω). It also follows that, if
x1 and x2 define a closed double cone Ω as in Section
II-C, then L(A, Ω) lies between the hyperplanes H1 :=
{P |xT

1 PAx1 = 0} and H2 := {P |xT
2 PAx2 = 0} and that

these hyperplanes are tangent to the set. These hyperplanes
define lines in the (q12, q22)-plane and examples of resulting
possible configurations for L(A, Ω) are shown in Figs. 3 and
4. As noted above, every tangent line to the ellipse L(A)
has the form {P |xT PAx = 0} for some x ∈ R2. As x
varies between x1 and x2, the tangent line varies from H1

to H2. As a consequence, any line {P |xT PAx = 0} which
is tangent to L(A) is also tangent to L(A, Ω) when x ∈ Ω.
The following result is an extension of Theorem 1.

Theorem 3: Let A1, A2 ∈ R2×2 be two Hurwitz matrices.
Suppose that Ω1 is a closed double cone of the form (1).
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Fig. 2. Graphical representations of symmetric matrices.



A necessary condition for the existence of a joint quadratic
Lyapunov function P ∈ P2(R) for the pairs (A1, Ω1) and
(A2,R2) is that there is no convex combination of A1 and
A2, or of A1 and A−1

2 , which has an eigenvector in Ω1

with non-negative eigenvalue. Furthermore, this condition is
sufficient to ensure that, for any x ∈ Ω1 and any y ∈ R2, no
separating tangential hyperplane as described by (2) exists
between L(A1,Ω1) and L(A2,R2).

Refer to [13] for proof. A separating tangential hyperplane
as described by (2), given a vector x ∈ Ω1 and a vector
y ∈ R2, is depicted in Fig. 3 by Type (a). Note that the above
condition is similar to the condition for CQLF existence
stated in Theorem 1. Now the unstable vectors of the convex
combinations of A1 and A2 and of A1 and A−1

2 play a role.
The condition presented in Theorem 3 is necessary but not
sufficient for determining joint QLF existence in some cases.
Consider a vector x /∈ Ω and assume that x1 6= x2. Any line
{P |xT PAx = 0} which is tangent to L(A) is not also
tangent to L(A, Ω). Thus, even if the condition presented in
Theorem 3 is satisfied, it may still be possible to separate
two disjoint sets L(A1, Ω1) and L(A2,R2) with a tangential
hyperplane of an alternative form as depicted in Figs. 3 and
4 by Types (b) and (c).

IV. MAIN RESULT

We now present a necessary and sufficient solution to the
joint QLF problem under consideration. Denote by A(Ω) the
image of the region Ω under that action of the matrix A.

Theorem 4: Let A1, A2 ∈ R2×2 be two Hurwitz matrices.
Suppose that Ω1 is a closed double cone of the form (1).
There exists a joint quadratic Lyapunov function P ∈ P2(R)
for the pairs (A1, Ω1) and (A2,R2) if and only if the
following conditions are satisified:
(i) there is no convex combination of A1 and A2, or of

A1 and A−1
2 , which has an eigenvector in Ω1 with non-

negative eigenvalue;
(ii) there is no convex combination of A−1

1 and A2, or of
A−1

1 and A−1
2 , which has an eigenvector in A1(Ω1) with

non-negative eigenvalue;

x
1

TPA
1
x

1
=0

x
2

TPA
1
x

2
=0

q
12

0

0 1-1

1

2

q
22

q
22 

= q
12

2

(a)

L(A
1
,Ω

1
)

L(A
2
,R2)

(b)
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(iii) and there is no nonzero y satisfying both equations

(aA1 + bA−1
1 + cA2)y = 0, (4)

ayyT + bA−1
1 yyT (A−1

1 )T = d1x1x
T
1 + d2x2x

T
2 (5)

for some non-negative coefficients a, b, c, d1, d2.
Refer to [13], [14] for proof. Note that (4) resembles

the kinds of singularity conditions that arise for the CQLF
problem in two dimensions. In fact, if a = 0 or b = 0
then (4) reduces to these conditions. Equation (5) is yet
another condition of this form. However, rather than the
singular eigenvectors being prohibited from Ω1, it is now
required that symmetric matrices constructed from y are
prohibited from a region in matrix space spanned by x1x

T
1

and x2x
T
2 . This latter, somewhat tedious condition, requires

the construction of a multi-dimensional root locus. In the
case of two-dimensional systems, one may circumvent this
condition by representing the point in the (q12, q22)-plane
at which the two hyperplanes H1 := {P |xT

1 PAx1 = 0}
and H2 := {P |xT

2 PAx2 = 0} intersect with a very special
dynamical system. (We shall denote this intersection point
by P0.) We will proceed to describe such a procedure in the
next section.

Remark 5: If P0 /∈ P2(R), then conditions (i) and (ii) of
Theorem 3 are necessary and sufficient for the existence of
a joint QLF for the pairs (A1, Ω1) and (A2,R2). Condition
(iii) is not required.

V. CONIC INTERSECTIONS

Recall that P0 denotes the point where the hyperplanes
H1 and H2 intersect. We associate with P0 a matrix Z such
that the function xT P0x defines a weak QLF [6, Appendix
A.3] for the dynamical system ẋ = Zx. In particular, we fix
P0 ∈ P2(R) and define Z = σP0, where

σ =
[

0 −1
1 0

]
.

Note that Z has pure imaginary eigenvalues; hence for each
ε > 0 the matrix Z − εI2 is Hurwitz, where I2 is the 2× 2
identity matrix. Furthermore ZT P0 +P0Z = 0 and therefore



the Lyapunov set L(Z − εI2) contains P0 for every ε > 0.
Since Z is not Hurwitz and since L(Z − εI2) decreases as
ε → 0 it follows that

⋂
ε>0

L(Z − εI2) = {kP0 | k > 0}.

Thus, informally, Z is the matrix whose “Lyapunov set” is
just the intersection point P0 as shown in Fig. 5.

A description for a separating tangential hyperplane of
Type (b) as shown in Figs. 3 and 5 can be composed in
the manner of (2) by equating oppositely oriented normal
vectors as follows. Let A2 ∈ R2×2 be a Hurwitz matrix and
l be a scalar. There are nonzero vectors y, z ∈ R2 satisfying
the equation

ZzzT + zzT ZT = −l2(A2yyT + yyT AT
2 ) (6)

if and only if P0 /∈ L(A2). To see this, note that if P0 ∈
L(A2) then AT

2 P0 + P0A2 < 0, however ZT P0 + P0Z = 0
and so a solution to (6) cannot exist. If P0 /∈ L(A2) then,
via application of Lemma 2, either

z = s1y and Zz = −
(

l2

s1

)
A2y, or (7)

z = s2A2y and Zz = −
(

l2

s2

)
y (8)

for some real scalar s1 or s2, respectively. Suppose that P0 is
not in the closure of L(A2). From (7), [A−1

2 Z+( l
s1

)2I]z = 0
which means that if (7) holds then A−1

2 Z has two negative,
real eigenvalues. From (8), [A2Z + ( l

s2
)2I]z = 0 which

means that if (8) holds then A2Z has two negative, real
eigenvalues. For future reference, we shall call the two
(independent) eigenvectors of the matrix with positive, real
eigenvalues z3 and z4 and call the eigenvectors of the matrix
with negative, real eigenvalues z̃3 and z̃4. We also want
to define a further four vectors z1, z2, z̃1 and z̃2. Let z1

and z2 be the eigenvectors of either the matrix A−1
1 Z or

A1Z which has positive, real eigenvalues and let z̃1 and z̃2

be the eigenvectors of the matrix which has negative, real
eigenvalues.
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A. An Alternative to Condition (iii)

As mentioned above, the matrix Z has an imaginary
spectrum and hence is not Hurwitz; therefore, the matrix
PZ + ZT P cannot be negative definite for any P ∈ P2(R).
However, given a set of vectors z1, . . . , zk ∈ R2, it may be
possible to find a P ∈ P2(R) such that zT

j (PZ +ZT P )zj <
0 for all j = 1, . . . , k. The next result provides a necessary
and sufficient condition for this to occur. The development of
an alternative solution to our joint QLF existence problem
will require only four vectors, however we state the next
result in full generality.

Before stating the result, two more definitions are pro-
vided. Given a vector z ∈ R2, there is a unique positive
number α and a vector z̃ ∈ R2 such that

z̃z̃T = αP−1
0 − zzT (9)

(note that z̃ is unique only up to sign). Next, let L1 and L2

be two finite collections of lines through the origin in R2.
We assume all lines are distinct. Suppose there are k lines in
L1, then these lines divide the plane into 2k disjoint regions,
each of them a pointed cone with vertex at the origin. These
2k regions can be combined into k double cones by taking
the union of each region with its reflection in the origin.
Then the collections L1 and L2 are defined to be disjoint if
L2 lies inside exactly one of these double cones.

Theorem 6: Let z1, . . . , zk ∈ R2. Let L be the collection
of lines through the origin parallel to the vectors z1, . . . , zk ∈
R2, and let L̃ be the collection of lines through the origin
parallel to the vectors z̃1, . . . , z̃k, where z̃j is defined by
(9) for each j = 1, . . . , k. Then there is a positive definite
matrix P ∈ P2(R) such that zT

j (PZ + ZT P )zj < 0 for all
j = 1, . . . , k if and only if L and L̃ are disjoint.

Refer to [13] for proof. We now present an alternative
solution to our joint QLF existence problem that circumvents
Condition (iii) of Theorem 4. Again, refer to [13] for proof.

Theorem 7: Let A1, A2 ∈ R2×2 be two Hurwitz matrices.
Suppose that Ω1 is a closed double cone of the form (1).
Define P0, Z, z1, . . . , z4 and z̃1, . . . , z̃4 as above. Let L
be the collection of lines through the origin parallel to the
vectors z1, . . . , z4 ∈ R2, and let L̃ be the collection of lines
through the origin parallel to the vectors z̃1, . . . , z̃4. Consider
the following conditions:
(i) There is no convex combination of A1 and A2, or of

A1 and A−1
2 , which has an eigenvector in Ω1 with non-

negative eigenvalue.
(ii) There is no convex combination of A−1

1 and A2, or of
A−1

1 and A−1
2 , which has an eigenvector in A1(Ω1) with

non-negative eigenvalue.
(iii) P0 ∈ P2(R) \L(A2) and the collections of lines L and

L̃ are disjoint.
If P0 /∈ P2(R), or if P0 ∈ L(A2), then conditions (i) and (ii)
are necessary and sufficient for the existence of a joint QLF
for the pairs (A1, Ω1) and (A2,R2). If P0 ∈ P2(R)\L(A2),
and if P0 is not in the closure of L(A2), then conditions (i),
(ii) and (iii) are necessary and sufficient for the existence of
a joint QLF for the pairs (A1, Ω1) and (A2,R2).



VI. EXAMPLE

We include a simple example. Suppose that

A1 =
(

12 −20
12 −17

)
, A2 =

( −0.99 −1
−0.97 −0.99

)

and that the vectors

x1 =
(

0.1
1

)
, x2 =

(
1

0.1

)

define the region Ω1. Solving the pair of linear equations
xT

1 PA1x1 = 0 and xT
2 PA1x2 = 0 gives P0 as follows:

P0 =
(

1 −0.990574337
−0.990574337 1.15872816

)
.

Note that P0 ∈ P2(R) \ L(A2) and that P0 is not in
the closure of L(A2). There exists no convex combination
of A1 and A2, or of A1 and A−1

2 , which has a non-
negative eigenvalue with associated eigenvector in Ω1. The
condition in Theorem 3 is satisfied, meaning that a separating
tangential hyperplane of Type (a) between the sets L(A1,Ω1)
and L(A2,R2) cannot exist. It might still be possible that a
tangential hyperplane of Type (b) and/or (c) separates the
sets though.

The matrix A−1
1 Z has two positive, real eigenvalues and

so we label the eigenvectors of this matrix (or multiples of
the eigenvectors of this matrix) z1 and z2. Since A1Z has
two negative, real eigenvalues, we name the eigenvectors of
this matrix (or multiples of the eigenvectors of this matrix)
z̃1 and z̃2. Thus, let

z1 =
(

0.1
1

)
, z2 =

(
1

0.1

)

and

z̃1 =
( −18.8
−15.8

)
, z̃2 =

(
10

10.3

)
.

The matrix A2Z has two positive, real eigenvalues and so
we label the eigenvectors of this matrix (or multiples of the
eigenvectors of this matrix) z3 and z4. Since A−1

2 Z has two
negative, real eigenvalues, we name the eigenvectors of this
matrix (or multiples of the eigenvectors of this matrix) z̃3

and z̃4. Let

z3 =
( −0.73068
−0.68272

)
, z4 =

( −0.71539
−0.69873

)

and

z̃3 =
( −0.77764

0.62871

)
, z̃4 =

(
0.97451
−0.22436

)
.

The resulting collections of lines L and L̃ through the origin
parallel to the vectors z1, . . . , z4 and z̃1, . . . , z̃4, respectively,
are shown in Fig. 6. The collections are not disjoint. Thus, a
joint QLF for the pairs (A1,Ω1) and (A2,R2) does not exist
(as illustrated in Fig. 5).
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Fig. 6. Collections of lines, L and L̃.

VII. CONCLUSIONS AND FUTURE WORK

Algebraic necessary and sufficient conditions were ob-
tained for determining joint QLF existence with respect to a
two-dimensional, state-dependent switched system stability
problem where a conic partition of the state space was
considered. It is expected that some of the results presented
in this paper will prove useful in extensions to higher-
dimensional systems.
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