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Abstract— A feedback interconnection consisting of two non-
linear systems is shown to be input-output stable when a
“mixed” small gain and passivity assumption is placed on each
of the systems. The “mixed” small gain and passivity property
captures the well-known notions of passivity and small gain
associated with systems: the property can be appropriately re-
duced to an input and output strictly passive system description;
or alternatively can be reduced to a description of a system with
small, finite gain. More importantly, the property captures a
concept of “blending” of the small gain and passivity ideas.
This concept of “blending” can be visualized, for example, by
considering linear time-invariant systems that exhibit passive-
type properties at, say low frequencies; and lose these passive-
type properties but have small gain at high frequencies.

I. INTRODUCTION

A desired property of a feedback interconnection of two
nonlinear systems is that the interconnection is input-output
stable [1]. To determine stability, one typically places as-
sumptions on the two nonlinear systems in the interconnec-
tion; and then shows that, if the closed-loop system’s inputs
belong to some class of functions, then the errors and outputs
also belong to the same class of functions [2]. To illustrate, a
negative feedback interconnection is shown in Fig. 1, where
M1 and M2 are operators acting on the errors e1 and e2,
respectively, to produce outputs y1 and y2, respectively.

The small gain and passivity theorems are two of the
most important results in the input-output stability theory of
interconnected systems. The small gain theorem states that if
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Fig. 1. Interconnection of M1 and M2.

This work was supported by ARC Discovery-Projects Grants
(DP0342683, DP0664427) and National ICT Australia. National ICT Aus-
tralia is funded through the Australian Government’s Backing Australia’s
Ability initiative, in part through the Australian Research Council.

W. Griggs, B. Anderson and M. Rotkowitz are with Department of
Information Engineering, Research School of Information Sciences and
Engineering, The Australian National University, Canberra ACT 0200,
Australia. B. Anderson is also with National ICT Australia Limited, Locked
Bag 8001, Canberra ACT 2601, Australia.

A. Lanzon is with Control Systems Group, School of Electrical and
Electronic Engineering, The University of Manchester, Sackville Street
Building, Manchester M60 1QD, UK.

Corresponding author: Wynita M. Griggs, Department of Information
Engineering, Research School of Information Sciences and Engineer-
ing, The Australian National University, Canberra ACT 0200, Australia
wynita.griggs@anu.edu.au

the product of the gains of two stable systems, interconnected
as shown in Fig. 1, is less than one, then the feedback inter-
connection of the two systems is stable [2]–[5]. The passivity
theorem guarantees stability of a feedback interconnection of
two stable systems if, for instance, both of the systems are
passive, and one of them is input strictly passive with finite
gain [2]–[4], [6]. However, there exist many situations where
stability of an interconnection cannot be determined by use of
the small gain or passivity theorems because the assumptions
made in the theorems are not appropriately matched to the
systems in the feedback interconnection in question.

Consider the negative feedback interconnection of two
single-input, single-output (SISO), linear time-invariant (LTI)
systems with transfer functions m1(s) = 3

(s+1)(s+2) and
m2(s) =

13
(s+3)(s+4) . The Nyquist diagrams of these transfer

functions are shown in Fig’s. 2 and 3, respectively. Ob-
viously, m1(s) and m2(s) are not in a form that allows
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Fig. 2. Nyquist diagram of m1(s).
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Fig. 3. Nyquist diagram of m2(s).



treatment of closed-loop stability by the small gain or
passivity theorems. Of course, stability of an interconnection
of two LTI systems can be determined using one of the many
alternative techniques available. For instance, one needs
only to check that the transfer function matrix mapping
input signals to error signals is input-output stable (provided
that the feedback-loop is well-posed). Alternatively, one can
check that the Nyquist diagram of the cascade of the two
systems does not encircle the point −1 + j0. Note in the
example provided that, since in some frequency range [0,Ω]
the systems are “passive”, and in the frequency range [Ω,∞)
the systems have “gain less than one”, (a property which
we will refer to as the “mixed” small gain and passivity
property), there is no way that the Nyquist diagram of the
cascade can encircle −1+ j0. Accordingly, the feedback in-
terconnection of the two systems is stable. So while stability
of LTI system interconnections is often easily determined,
this example provides insight into an interesting class of
(possibly nonlinear) systems, exhibiting what we will call
a “mixed” small gain and passivity property, for which we
would like to obtain stability results.

Obtaining stability results regarding such a class of sys-
tems has practical applicability. For example, it has been
observed that high frequency dynamics can frequently de-
stroy the passivity property of an otherwise passive system.
A celebrated controversy in adaptive control [7] depended
on the observation that passivity conditions normally forming
part of the hypotheses of the proofs of convergence of certain
adaptive control algorithms should not be assumed to be
valid in practice (because high frequency dynamics often
neglected for modelling purposes will always be present in
a real system). Failure of the passivity condition invalidated
the applicability of the associated theorem on the algorithm
convergence to most real-life applications, and left a cloud
hanging over the real-life use of the algorithm. Simulations
of [7] confirmed that adverse behavior could occur when
high frequency dynamics were explicitly taken into account.

The book [8] (see also [9] and [10]) described tools
for establishing stability of adaptive systems of the type
examined in [7]; that is, where “passivity” properties hold
only for low frequency signals. Stability is established if
additionally, and in a rough manner of speaking, “gains” are
small at high frequencies, ie: a small gain property in the
sense of the small gain theorem holds in the frequency band
where the passivity condition fails. In other words, there is an
important class of applications in which passivity and small
gain ideas have to be blended.

A result ensuring stability of an interconnection of two
multi-input, multi-output (MIMO), LTI systems, where each
system exhibits a “mixed” small gain and passivity frequency
domain property, was reported in [11] and [12]. We now
seek to derive a stability result for interconnected, causal,
nonlinear systems. As mentioned above, such a result would
have practical applicability; it would also be an interesting
extension to the nonlinear stability tools of passivity and
small gain.

The paper is divided into the following sections. In Sec-

tion II, the feedback interconnection under consideration is
described in detail. In Section III, the concept of a “mixed”
small gain and passivity property for nonlinear systems is
defined. The closed-loop stability result is stated in Section
IV and is the main contribution of this paper. Conclusions
and intended future developments are provided in Section V.

Notation

The field of real numbers is denoted by R. Suppose that
X and Y are real inner product spaces. The inner product
of X is denoted by 〈·, ·〉 : X × X → R. A norm for each
element of X is defined to be ‖f‖2

X
= 〈f, f〉. An important

property of inner product spaces is the so-called Cauchy-
Schwarz inequality; that is |〈f, g〉| ≤ ‖f‖X ‖g‖X ∀f, g ∈ X .
Suppose that H and K are Hilbert spaces. For a bounded
linear operator H : H → K, the Hilbert adjoint H∼ : K →
H of H is defined by 〈Hh, k〉 = 〈h,H∼k〉 for all h ∈ H
and k ∈ K.

Let L2[0,∞) denote the Lebesgue space with inner prod-
uct defined as

〈f, g〉 =

∫

∞

0

g′(t)f(t)dt,

where the superscript (·)′ denotes the vector transpose. The
norm of functions in L2[0,∞) is denoted by ‖ · ‖. For T ∈
[0,∞), let PT denote the truncation operator. That is, for a
function f(t), 0 ≤ t <∞,

(PT f)(t) :=

{

f(t), t ≤ T

0, t > T
.

For convenience, the notation fT := PT f is used. We define
〈f, g〉T := 〈fT , gT 〉 and note that 〈fT , gT 〉 = 〈fT , g〉 =
〈f, gT 〉. Let L2e denote the extension of the space L2[0,∞),
defined by L2e := {f : fT ∈ L2[0,∞) ∀T ∈ [0,∞)}. Recall
that the space L2[0,∞) satisfies the following properties:

i) The space L2[0,∞) is such that if f ∈ L2[0,∞),
then fT ∈ L2[0,∞) ∀T ∈ [0,∞); and moreover,
the space L2[0,∞) is such that f = limT→∞ fT .
Equivalently, the space L2[0,∞) is closed under the
family of projections {PT }.

ii) If f ∈ L2[0,∞) and T ∈ [0,∞), then ‖fT ‖ ≤ ‖f‖.
Moreover, ‖fT ‖ is a nondecreasing function of T ∈
[0,∞).

iii) If f ∈ L2e, then f ∈ L2[0,∞) if and only if
limT→∞ ‖fT ‖ <∞.

Throughout the paper, the term system will be used to
refer to a mapping from L2e into L2e, which satisfies a
causality condition. An operator M : L2e → L2e is causal
if PTMPT = PTM for all T ∈ [0,∞). An operator M :
L2e → L2e is anticausal if (I−PT )M(I−PT ) = (I−PT )M
for all T ∈ [0,∞). A system mapping L2e into L2e is input-
output L2-stable if the output belongs to L2[0,∞) whenever
the input belongs to L2[0,∞) [3]. For simplicity, input-
output L2-stability will be referred to as input-output stability
or stability when the context is clear. It is assumed that all
systems considered are relaxed systems (that is, they have
zero initial state).



The operator I : X → X , defined by Ix := x for all x ∈
X , denotes the identity operator. The operator 0 : X → Y ,
defined by 0x := 0 for all x ∈ X (where 0 denotes the zero
vector from Y), denotes the zero operator. The following
acronyms are used throughout the paper: LTI - linear time-
invariant; SISO - single-input, single-output; MIMO - multi-
input, multi-output; RHP - right half plane; RHS - right-hand
side; LHS - left-hand side.

II. FEEDBACK SYSTEM DESCRIPTION
We wish to derive an input-output stability result for the

feedback interconnection shown in Fig. 1. This feedback
interconnection is described by the equations

e1 = u1 − y2 y1 =M1e1

e2 = u2 + y1 y2 =M2e2

where u1, u2 ∈ L2e are the (external) input signals; e1, e2 ∈
L2e are the error signals; and y1, y2 ∈ L2e are the output
signals. The operators M1 and M2 are assumed to causally
map L2e into L2e. Furthermore, M1 and M2 each have
associated with them a “mixed” small gain and passivity
property (defined formally in Section III).

This property captures concepts of passivity or small gain
normally associated with a system: the general description
of the property given in Section III can be reduced to
describe a (possibly input and) output strictly passive system;
alternatively, the general description of the property given in
Section III can be reduced to describe a system with small
gain (of less than or equal to one). What is interesting is that
the property additionally captures a concept of “blending”
of the small gain and passivity ideas. This concept of
“blending” is best visualized if we focus for a moment on
SISO, LTI systems. Nyquist plots of SISO, LTI systems with
“mixed” small gain and passivity properties lie in the region
consisting of the union of the RHP and the inside of the
unit circle, as shown in Fig. 4. The “mixed” small gain and
passivity frequency domain property for SISO, LTI systems
was formally defined in [11] and [12] as follows: there exist
constants 0 ≤ ε < 1, k > 0 and l > 0 such that

− 〈m̂f̂ , (kα+ 1− α)m̂f̂〉+ 2〈m̂f̂ , αf̂〉

− 〈f̂ , (lα− ε(1− α))f̂〉 ≥ 0

∀f̂ ∈ H2
1; where m̂ ∈ RH∞

2 and α(ω) is a real,
continuous, even function of frequency that is: i) equal to

1H2 denotes the real frequency domain Hardy space in which

‖f̂‖ =

{

1

2π

∫

∞

−∞

f̂∗(jω)f̂(jω)dω

} 1

2

and the superscript (·)∗ denotes the complex conjugate transpose. H2 is a
Hilbert space under the inner product

〈f̂ , ĝ〉 =
1

2π

∫

∞

−∞

ĝ∗(jω)f̂(jω)dω.

2L∞ is a Banach space of matrix- (or scalar-) valued functions that are
essentially bounded on jR. The Hardy space, H∞, is the closed subspace of
L∞ with functions that are analytic and bounded in the open RHP. RH∞

denotes the subspace of H∞ whose transfer functions are proper and real
rational, and consequently, are analytic and bounded in the closed RHP.

one on frequency intervals for which the system described
by m̂(s) is “input and output strictly passive”; ii) equal to
zero on frequency intervals for which the system described
by m̂(s) has “gain less than one”; and iii) is strictly greater
than zero and strictly less than one on frequency intervals
for which the system described by m̂(s) is “input and output
strictly passive with gain less than one”. When the feedback
interconnection of two such SISO, LTI systems is considered,
the “mixed” small gain and passivity stability result further
requires that there exist common frequency intervals over
which both systems are “passive” (and may or may not have
“small gain”); and that the remaining frequency intervals are
intervals over which both systems have “small gain” (and
may or may not be “passive”). (Refer to [11] and [12] for
further details.) Examples of two systems that satisfy these
requirements were given in Section I.

So we intend for the “mixed” small gain and passivity
property to capture a class of causal, nonlinear systems that
is larger than the class of (possibly input and) output strictly
passive systems together with the class of systems with small
gain. Strictness and non-strictness of the “mixed” small gain
and passivity property will be dealt with formally in later
sections. Similarly to the passivity and small gain theorems,
one of the systems in the feedback interconnection is required
to have a strict form of the “mixed” small gain and passivity
property associated with it.

Well-posedness of the feedback interconnection corre-
sponds to the existence and uniqueness of solutions e1, e2
and y1, y2 for each choice of u1, u2 (and one may also
wish to include requirements of causality and continuous
dependence) [13]. References [1], [14] describe conditions
to impose on the operators M1 and M2 to guarantee well-
posedness of the feedback-loop. We do not discuss well-
posedness further in this paper; we assume that the feedback
interconnection illustrated in Fig. 1 has a unique solution.

III. THE “MIXED” SMALL GAIN AND PASSIVITY
PROPERTY

As mentioned above, the “mixed” small gain and passivity
property can be thought of as a “blending” of the concepts
of passivity and small gain. We first recall the concepts of
finite gain and passivity.

Definition 1: [3] A system M : L2e → L2e is said to
have a finite gain if there exist constants ε̄ ≥ 0 and η ≥ 0,
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Fig. 4. Union of RHP and inner unit circle.



such that
‖(Mf)T ‖ ≤ ε̄‖fT ‖+ η (1)

for all input signals f ∈ L2e and all T ∈ [0,∞).
The constant η is called the bias term and is included to

allow for the case where Mf 6= 0 when f = 0 [3]. Clearly,
if there do exist constants ε̄ and η such that (1) holds, then ε̄
is not uniquely defined. We call the gain of M the number
ε defined by

ε = inf{ε̄ ∈ R+ : ∃η such that inequality (1) holds}

(see [2, Section III.2]). Systems with finite gain are said to
be finite-gain stable [3]. Obviously, if a system has finite
gain, then the system is input-output stable.

Definition 2: [3] A system M : L2e → L2e is said to
be input and output strictly passive if there exist constants
k > 0, l > 0 and m ∈ R such that

〈Mf, f〉T ≥ k‖(Mf)T ‖
2 + l‖fT ‖

2 +m (2)

for all input signals f ∈ L2e and all T ∈ [0,∞). The system
M is said to be input strictly passive if it satisfies (2) with
k = 0; output strictly passive if it satisfies (2) with l = 0;
and, passive if it satisfies (2) with k = l = 0.

The bias term m is included to account for the possible
effect of energy stored in the system at t = 0 [3]. Note that
input and output strict passivity is equivalent to input strict
passivity with finite gain [6], [15], [16]. We now define (the
strict version of) a “mixed” small gain and passivity property.

Definition 3: Let Γ : L2[0,∞) → L2[0,∞) and B :
L2[0,∞) → L2[0,∞) be causal, bounded, linear operators
such that

Γ∼Γ + B∼B = I. (3)

(Note that a causal operator mapping L2[0,∞) into L2[0,∞)
immediately extends to map L2e into L2e.) Then a system
M : L2e → L2e is said to have a strict “mixed” small gain
and passivity property if there exist constants 0 ≤ ε < 1,
k > −1, l ≥ 0 and ζ ≥ 0 such that

− 〈Mf,Mf〉T + ε〈Γf,Γf〉T − k〈BMf,BMf〉T

+ 2〈BMf,Bf〉T − l〈Bf,Bf〉T + ζ ≥ 0 (4)

for all input signals f ∈ L2e and all T ∈ [0,∞).
The “mixed” small gain and passivity property captures

the concepts of passivity or small gain normally associated
with a system as follows. If Γ = 0, then (4) describes a
(possibly input and) output strictly passive system. If B = 0,
then (4) describes a system with gain less than one. The
description of the “mixed” small gain and passivity property
additionally captures a concept of “blending” of the small
gain and passivity ideas. In the case of LTI systems for
example, if Γ is close to 0 at low frequencies and close to 1
at high frequencies (at least in magnitude), then the mixed
property in qualitative terms corresponds to the system being
passive at low frequencies and having small gain at high
frequencies. References [11] and [12] extensively illustrate
the concept of “blending” of the small gain and passivity
ideas in the frequency domain.

A consequence of a system having a strict “mixed” small
gain and passivity property is that the system is guaranteed
to have finite gain.

Lemma 4: A system M : L2e → L2e with a strict
“mixed” small gain and passivity property associated with
it (in the sense of Definition 3) has finite gain.

Proof: Let ΓT := PTΓ and BT := PTB, and note that

Γ∼T ΓT + B∼T BT ≤ I (5)

∀T ∈ [0,∞). (That is, 〈x, (Γ∼T ΓT +B∼T BT )x〉 ≤ 〈x, Ix〉 for
all x ∈ L2[0,∞) and T ∈ [0,∞).) Due to the causality of
Γ and B, and the linearity and anticausality of Γ∼ and B∼,
inequality (4) can be rewritten as

LHS := ‖(Mf)T ‖
2 + k〈Mf,B∼T BTMf〉T − ζ

≤ ε〈f,Γ∼T ΓT f〉T − l〈f,B
∼

T BT f〉T + 2〈Mf,B∼T BT f〉T

≤ ε〈f,Γ∼T ΓT f〉T + l〈f,B∼T BT f〉T + 2〈Mf,B∼T BT f〉T

=: RHS.

Let ψ = max{ε, l}. The RHS of the preceding inequality is
less than or equal to

ψ〈f, (Γ∼T ΓT + B∼T BT )f〉T + 2〈Mf,B∼T BT f〉T

≤ ψ‖fT ‖
2 + 2〈Mf,B∼T BT f〉T (using (5))

= ψ‖fT ‖
2 + 2〈Mf,B∼T BT fT 〉T (since B is causal)

≤ ψ‖fT ‖
2 + 2‖(Mf)T ‖‖B∼T BT ‖‖fT ‖ (using the

Cauchy-Schwarz and submultiplicative inequalities)

≤ ψ‖fT ‖
2 + 2‖(Mf)T ‖‖fT ‖ (since ‖B∼T BT ‖ ≤ 1).

The LHS of the aforementioned inequality is greater than or
equal to φ‖(Mf)T ‖

2−ζ, where 0 < φ ≤ 1 is some constant,
as follows. If k ≥ 0, then the LHS is greater than or equal
to ‖(Mf)T ‖

2 − ζ. If −1 < k < 0, then the LHS is equal to

‖(Mf)T ‖
2 − |k|〈Mf,B∼T BTMf〉T − ζ

= ‖(Mf)T ‖
2 − |k|〈Mf,B∼T BT (Mf)T 〉T − ζ (since B is

causal)

≥ ‖(Mf)T ‖
2 − |k|‖B∼T BT ‖‖(Mf)T ‖

2 − ζ (using the
Cauchy-Schwarz and submultiplicative inequalities)

≥ ‖(Mf)T ‖
2 − |k|‖(Mf)T ‖

2 − ζ (since ‖B∼T BT ‖ ≤ 1)

= (1− |k|)‖(Mf)T ‖
2 − ζ.

Then φ :=

{

1, k ≥ 0

1− |k|, −1 < k < 0
and we have

φ‖(Mf)T ‖
2 ≤ ψ‖fT ‖

2 + 2‖(Mf)T ‖‖fT ‖+ ζ.

Since φ > 0, we can write this in the form

‖(Mf)T ‖
2 ≤ 2φ̄‖fT ‖‖(Mf)T ‖+ φ̄

(

ψ‖fT ‖
2 + ζ

)

where φ̄ := 1
φ

, and so

‖(Mf)T ‖ ≤ φ̄‖fT ‖+
√

φ̄2‖fT ‖2 + φ̄ (ψ‖fT ‖2 + ζ)

≤ φ̄‖fT ‖+
√

φ̄2‖fT ‖2 + φ̄ψ‖fT ‖2 +

√

φ̄ζ



=

(

φ̄+

√

φ̄2 + φ̄ψ

)

‖fT ‖+

√

φ̄ζ.

IV. STABILITY RESULT

We now show that if two causal, nonlinear systems M1

and M2 each have associated with them a “mixed” small gain
and passivity property, and furthermore, if the “mixed” small
gain and passivity property associated with system M2 is
strict, then the feedback interconnection illustrated in Fig. 1
is guaranteed to be input-output stable.3 This result is the
main contribution of the paper.

Theorem 5: Consider a feedback interconnection as
shown in Fig. 1 and described by the equations

e1 = u1 −M2e2 (6)
e2 = u2 +M1e1 (7)

where M1 and M2 causally map L2e into L2e. Assume
that for any u1 and u2 in L2[0,∞), there are solutions
e1 and e2 in L2e. Suppose that there exist constants
ε1, k1, l1, ζ1, ε2, k2, l2 and ζ2 such that

− 〈M1f,M1f〉T + ε1〈Γf,Γf〉T − k1〈BM1f,BM1f〉T

+ 2〈BM1f,Bf〉T − l1〈Bf,Bf〉T + ζ1 ≥ 0 (8)
− 〈M2f,M2f〉T + ε2〈Γf,Γf〉T − k2〈BM2f,BM2f〉T

+ 2〈BM2f,Bf〉T − l2〈Bf,Bf〉T + ζ2 ≥ 0 (9)

∀f ∈ L2e, ∀T ∈ [0,∞), where Γ and B are defined in
Definition 3. Under these conditions, if

0 ≤ ε1 ≤ 1 l1 + k2 ≥ 0

0 ≤ ε2 < 1 l2 + k1 ≥ 0

k2 > −1, l2 ≥ 0

then u1, u2 ∈ L2[0,∞) imply that e1, e2,M1e1,M2e2 ∈
L2[0,∞).

To avoid confusion, note that Γ is a single operator that
appears in (8) and (9). Similarly, B is a single operator
that appears in (8) and (9).4 Also note that with appropriate
choices of Γ and B, Theorem 5 reduces to versions of the
passivity theorem (Γ = 0); or the small gain theorem (B= 0).

The input and output signal space for the feedback inter-
connection shown in Fig. 1 is the product space L2e ×L2e,
and the elements of the input and output signal space are
u := ( u1

u2
) and y := ( y1y2 ), respectively. Inner products in

these spaces are derived by summing inner products in the
component spaces. The proof to Theorem 5 thus proceeds

3In fact (corresponding to the choice of constants k1 and l1 below), the
result states that M1 need not have a “mixed” small gain and passivity
property associated with it at all, provided that the “lack” of the property
is compensated by the “strength” of the “mixed” small gain and passivity
property associated with M2. The constants defined in Theorem 5 and the
conditions associated with them quantify these ideas of “lack”, “strength”
and compensation.

4In the LTI case, this relates to a requirement that a common frequency
interval can be found on which both systems in the feedback interconnection
are “input and output strictly passive and have gain less than one” (see [12,
Section II] for details).

with a summing of the inner products in (8) and (9) to
derive an inner product inequality describing the feedback
interconnection. Then appropriate manipulations to the inner
product inequality give the desired stability result.

Proof: Truncating (6) and (7) gives

e1T = u1T − (M2e2)T (10)
e2T = u2T + (M1e1)T . (11)

For any u1, u2 ∈ L2[0,∞), for any T ∈ [0,∞),

− 〈M1e1,M1e1〉T + ε1〈Γe1,Γe1〉T − l1〈Be1,Be1〉T
+ 2〈BM1e1,Be1〉T − k1〈BM1e1,BM1e1〉T + ζ1

− 〈M2e2,M2e2〉T + ε2〈Γe2,Γe2〉T − l2〈Be2,Be2〉T
+ 2〈BM2e2,Be2〉T − k2〈BM2e2,BM2e2〉T + ζ2

=− 〈e1, (I − ε1Γ
∼

T ΓT )e1〉T − (l1 + k2)〈e1,B∼T BT e1〉T

− 〈e2, (I − ε2Γ
∼

T ΓT )e2〉T − (l2 + k1)〈e2,B∼T BT e2〉T

− 〈u1, (I + k2B∼T BT )u1〉T − 〈u2, (I + k1B∼T BT )u2〉T

+ 2〈e1, (I + k2B∼T BT )u1〉T + 2〈e2, (I + k1B∼T BT )u2〉T

− 2〈e1,B∼T BTu2〉T + 2〈e2,B∼T BTu1〉T + ζ1 + ζ2

using (10) and (11) to substitute in for (M2e2)T and
(M1e1)T , respectively; and appealing to the causality of Γ
and B, and the linearity and anticausality of Γ∼ and B∼ while
rearranging. Using (8) and (9), the LHS and thus the RHS
of this equality is greater than or equal to zero, giving a new
inequality. In this inequality, set ζ̄ := ζ1+ζ2 for convenience.
Then, for any u1, u2 ∈ L2[0,∞) and any T ∈ [0,∞), we
know that there exist constants ε1, k1, l1, ε2, k2, l2 and ζ̄ such
that

‖e1T ‖
2 − ε1〈e1,Γ

∼

T ΓT e1〉T + (l1 + k2)〈e1,B∼T BT e1〉T+

‖e2T ‖
2 − ε2〈e2,Γ

∼

T ΓT e2〉T + (l2 + k1)〈e2,B∼T BT e2〉T

≤ 2〈e1, u1〉T − 2〈e1,B∼T BTu2〉T + 2k2〈e1,B∼T BTu1〉T+

2〈e2, u2〉T + 2〈e2,B∼T BTu1〉T + 2k1〈e2,B∼T BTu2〉T−

k2〈u1,B∼T BTu1〉T − ‖u1T ‖
2 − k1〈u2,B∼T BTu2〉T−

‖u2T ‖
2 + ζ̄. (12)

The LHS of (12) is greater than or equal to

‖e1T ‖
2 − ε1〈e1,Γ

∼

T ΓT e1〉T + ‖e2T ‖
2 − ε2〈e2,Γ

∼

T ΓT e2〉T

(since l1 + k2 ≥ 0 and l2 + k1 ≥ 0)

= ‖e1T ‖
2 − ε1〈e1,Γ

∼

T ΓT e1T 〉T − ε2〈e2,Γ
∼

T ΓT e2T 〉T+

‖e2T ‖
2 (since Γ is causal)

≥ ‖e1T ‖
2 − ε1‖Γ

∼

T ΓT ‖‖e1T ‖
2 − ε2‖Γ

∼

T ΓT ‖‖e2T ‖
2+

‖e2T ‖
2 (using the Cauchy-Schwarz and

submultiplicative inequalities)

≥ ‖e1T ‖
2 − ε1‖e1T ‖

2 + ‖e2T ‖
2 − ε2‖e2T ‖

2 (since
‖Γ∼T ΓT ‖ ≤ 1)

= (1− ε1)‖e1T ‖
2 + (1− ε2)‖e2T ‖

2

≥ (1− ε2)‖e2T ‖
2 (since 1− ε1 ≥ 0).



Then

(1− ε2)‖e2T ‖
2

≤ 2〈e1, u1〉T − 2〈e1,B∼T BTu2〉T + 2k2〈e1,B∼T BTu1〉T+

2〈e2, u2〉T + 2〈e2,B∼T BTu1〉T + 2k1〈e2,B∼T BTu2〉T+

ζ̄ − k2〈u1,B∼T BTu1〉T − ‖u1T ‖
2 − k1〈u2,B∼T BTu2〉T

− ‖u2T ‖
2

≤ 2〈e1, u1〉T − 2〈e1,B∼T BTu2〉T + 2k2〈e1,B∼T BTu1〉T+

2〈e2, u2〉T + 2〈e2,B∼T BTu1〉T + 2k1〈e2,B∼T BTu2〉T−

k2〈u1,B∼T BTu1〉T − k1〈u2,B∼T BTu2〉T + ζ̄

≤ 2|〈e1, u1〉T |+ 2|〈e1,B∼T BTu2〉T |+ |k2|〈u1,B∼T BTu1〉T

+ 2|k2||〈e1,B∼T BTu1〉T |+ 2|k1||〈e2,B∼T BTu2〉T |+ ζ̄+

2|〈e2, u2〉T |+ 2|〈e2,B∼T BTu1〉T |+ |k1|〈u2,B∼T BTu2〉T .

Letting ρ = max{|k1|, |k2|}, the last inequality is less than
or equal to

2|〈e1, u1〉T |+ 2|〈e1,B∼T BTu2〉T |+ ρ〈u1,B∼T BTu1〉T+

2|〈e2, u2〉T |+ 2|〈e2,B∼T BTu1〉T |+ ρ〈u2,B∼T BTu2〉T+

2ρ(|〈e1,B∼T BTu1〉T |+ |〈e2,B∼T BTu2〉T |) + ζ̄

= 2|〈e1, u1〉T |+ 2|〈e1,B∼T BTu2T 〉T |+ ρ〈u1,B∼T BTu1T 〉T

+ 2ρ(|〈e1,B∼T BTu1T 〉T |+ |〈e2,B∼T BTu2T 〉T |) + ζ̄+

2|〈e2, u2〉T |+ 2|〈e2,B∼T BTu1T 〉T |+ ρ〈u2,B∼T BTu2T 〉T

(since B is causal)
≤ 2‖e1T ‖‖u1T ‖+ 2‖B∼T BT ‖(‖e1T ‖‖u2T ‖+ ‖e2T ‖‖u1T ‖)

+ 2‖e2T ‖‖u2T ‖+ ρ‖B∼T BT ‖(‖u1T ‖
2 + ‖u2T ‖

2) + ζ̄+

2ρ‖B∼T BT ‖(‖e1T ‖‖u1T ‖+ ‖e2T ‖‖u2T ‖) (using the
Cauchy-Schwarz and submultiplicative inequalities)

≤ 2ρ(‖e1T ‖‖u1T ‖+ ‖e2T ‖‖u2T ‖) + ρ(‖u1T ‖
2 + ‖u2T ‖

2)

+ 2(‖e1T ‖+ ‖e2T ‖)(‖u1T ‖+ ‖u2T ‖) + ζ̄ (since
‖B∼T BT ‖ ≤ 1).

Using (10) to eliminate e1T , followed by the triangle inequal-
ity, and then applying Lemma 4 to M2, gives

(1− ε2)‖e2T ‖
2

≤ 2(‖u1T ‖+ κ‖e2T ‖+ ξ + ‖e2T ‖)(‖u1T ‖+ ‖u2T ‖)+

2ρ[(‖u1T ‖+ κ‖e2T ‖+ ξ)‖u1T ‖+ ‖e2T ‖‖u2T ‖]+

ρ(‖u1T ‖
2 + ‖u2T ‖

2) + ζ̄, (13)

where the non-negative constants κ and ξ exist due to the
boundedness of M2. Since 1−ε2 > 0, write (13) in the form

‖e2T ‖
2 ≤ 2b̄(T )‖e2T ‖+ c̄(T ). (14)

Note that b̄(T ) and c̄(T ) tend to finite values b̄ and c̄,
respectively, as T → ∞, since u1, u2 ∈ L2[0,∞). From
(14)

‖e2T ‖ ≤ b̄(T ) + (b̄(T )2 + c̄(T ))
1

2

∀T ∈ [0,∞), and remains bounded as T → ∞. So e2 ∈
L2[0,∞). From Lemma 4 the same holds for M2e2, ie:
M2e2 ∈ L2[0,∞). By (6) and (7) it follows that e1 and
M1e1 ∈ L2[0,∞).

V. CONCLUSIONS AND FUTURE WORK

Input-output stability for a feedback interconnection of
two causal nonlinear systems was proven, where each system
had a “mixed” small gain and passivity property associated
with it. We indicated that this “mixed” small gain and
passivity assumption reduces to a passive system description,
or to a description of a system with small gain, when certain
operators of the property are appropriately defined. More im-
portantly, the property describes systems that have “blended”
small gain and passivity ideas attributed to them which the
small gain and passivity theorems alone cannot capture. It
is well-known that nonlinear stability techniques, such as
integral quadratic constraint and dissipative system concepts,
also capture the notions of small gain, and alternatively, pas-
sivity. In future work, we intend that the relationship between
the “mixed” small gain and passivity concept described in
this paper, and other nonlinear stability techniques (including
Lyapunov stability notions) be explored.
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