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Abstract In an emerging world of large-scale, interconnected, intelligent transporta-

tion systems, demonstrating and validating novel ideas and technologies can be a

challenging one. Traditionally, one is presented with a choice to make, between

performing demonstrations with a few proof-of-concept “outfitted” vehicles, or ex-

perimenting with large-scale computer simulation models. In this chapter, we re-

visit a recent vehicle-in-the-loop (VIL) emulation platform that was developed with

the goal in mind of taking steps towards countering the above validation dilemma.

Roughly speaking, it was shown that a real, outfitted test vehicle, equipped with

novel intelligent transportation technologies, could be “embedded” in a large-scale

traffic emulation being performed with the microscopic traffic simulation package

SUMO, thus allowing the real vehicle and driver to interact with thousands of simu-

lated cars on a common road map in real-time. In our present work, we now provide

an overview of the latest updates to the VIL platform, which include some enhance-

ments to increase the platform’s versatility and improve its functionality.
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1 Introduction

Vehicle-in-the-loop (VIL) simulation is emerging as an increasingly popular tool

by which to circumvent a common dilemma arising in regards to the demonstra-

tion and validation of novel intelligent transportation technologies. This dilemma

concerns the fact that intelligent transportation systems (ITS) are often intended to

be deployed in large urban areas or major cities, and thus gaining access to fleets

of thousands of vehicles equipped with the prototype technologies and communi-

cations abilities necessary for demonstrating ITS is usually not practical nor easily

achievable. On the one hand, simulators can be used to compensate and emulate

large scale, but cannot accommodate for all of the unmodelled vehicle dynamics,

and other complexities, uncertainties, technical issues, and driver attitudes and re-

sponses that might arise in the real world [41]; not to mention that, given the rapid

development and deployment of ITS, the associated experience of being in a con-

nected vehicle scenario for many drivers will be brand new. On the other hand,

small, real-world test fleets of one to twenty vehicles can demonstrate proof-of-

concept, but cannot accurately predict the outcomes of ITS applied in the context of

much larger fleet sizes and city-wide scenarios [12].

In a recent paper [12], we explored a low-cost, relatively straightforward method

of merging large-scale traffic simulation and the proof-of-concept capability pro-

vided by real-world vehicles. A VIL platform for embedding, in real time, a real

vehicle into SUMO (Simulation of Urban MObility) was built. SUMO is an open

source, microscopic road traffic simulation package primarily being developed at the

Institute of Transportation Systems at the German Aerospace Centre (DLR) [23].

Utilising our VIL platform, we then demonstrated a number of experimental ITS

applications that we had developed primarily at the National University of Ireland,

Maynooth in Maynooth, Ireland. These applications were examples of large-scale

feedback systems built upon infrastructure-to-vehicle (I2V) capabilities. A goal of

our demonstrations was to illustrate how to provide drivers of real vehicles the op-

portunity to somewhat experience what it would feel like to be part of a large-scale

connected vehicle scenario, where the rest of the traffic in the scenario was simulated

by SUMO in order to avoid the necessity of large, real vehicle test fleets. In addition,

our platform aims to: (i) permit feedback of real vehicle and driver responses that, in

pure simulation alone, may be unmodelled, unpredicted or unexpected (e.g. delays

in reaction time and imprecise vehicle control); (ii) be inexpensive to build; and (iii)

illustrate potential for performing safe field demonstrations (e.g. on empty roads or

test tracks) while scenarios such as wide-spread traffic congestion or accidents are

simulated.

In this present work, we now aim to provide an overview of the latest updates

to our VIL platform; see Section 4. Our updates include enhancements that aim

to increase the platform’s versatility and improve its functionality. We accompany

the descriptions of these updates with some discussion on the potential ITS appli-

cations that our VIL platform could now demonstrate and validate; in particular, a
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more in-depth example of a novel speed advisory system is provided in Section 5.

First, however, we revisit the basic architecture of our VIL platform in Section 3,

and explore some state of the art in regards to hardware-in-the-loop (HIL) and VIL

simulation in general, in Section 2. Our future objectives are discussed in Section 6.

2 State of the Art

HIL simulation provides a means by which to add the complexity of a real plant

under control to a virtual testing platform. Circumstances that can warrant the use

of HIL simulation include: tight development schedules; practicality; development

program cost savings; test safety; and the need to consider real humans and/or sys-

tems in the loop. HIL simulation has had a place in the automotive industry for

quite some time; for instance, in the testing of automotive anti-lock braking systems

[19], diagnostic software [22], and electric vehicle drive trains and controllers [31].

Recently, however, in addition to the established focus on testing new systems in-

tended for integration into a single vehicle, in models of said vehicles, the concept

of HIL simulation has been expanded upon such that it also encompasses the test-

ing of entire vehicles, equipped with Advanced Driver Assistance Systems (ADAS)

or ITS technologies (along with real drivers or autonomous driving capabilities), in

potentially very large-scale or many multiple different traffic scenario simulations.

The term being used for this kind of testing is vehicle-in-the-loop (VIL) simulation;

see, for example, [16].

2.1 VIL Simulation Platforms

A number of VIL simulation platforms for testing ADAS currently exist. Examples

include those described in [6, 4, 30, 20, 21], as well as in [12], and its predecessor

[13]. The work in [6] particularly focused on autonomous intervening assistance

systems for collision avoidance or mitigation. A VIL test setup was described in

order to build upon existing validation methods such as driving simulators, traf-

fic flow simulations, and test vehicles that collide with substitutes such as foam

cubes; see, also, [5]. Similarly, with respect to accident mitigation and avoidance, it

was observed in [4] that VIL testing had a place, not only in validating the techni-

cal functionality of intervening systems, but also in studying the behaviour of real

drivers as they interacted with the new technology. VIL was proposed as a method

to combine virtual, visual simulation with the kinesthetic, vestibular and auditory

feedback of a real car driving on a real test track, and thus VIL was promoted as

capable of offering a variety of new options for evaluating ADAS, and of providing

a real driving experience combined with the safety and test replication abilities of

driving simulators. See, also, [37].
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The work of [11] presents a midway approach to ADAS prototyping and valida-

tion, laying somewhere between HIL and VIL, that the authors refer to as vehicle-

hardware-in-the-loop (VeHIL). Their particular system is called SERBER. As op-

posed to having a driver travelling on a real test track, as was the case in [4], real

vehicles in the setup of [11] are physically locked on a chassis dynamometer and

thus the tests are conducted indoors. In this setup, environmental parameters such as

humidity, ambient light, temperature, and so on, can be easily controlled. The chas-

sis dynamometer is paired with multi-sensor road environment simulation software.

TASS International offers a VeHIL laboratory; see [40].

In [1], the concept of subsystem development occurring in parallel across dif-

ferent parts of the globe (for example, in globally distributed company depart-

ments) was tackled via the introduction of a new validation concept called X-in-

the-distance-loop. Typically, bringing such subsystems together physically in order

to validate interactions between them, as well as the system’s behaviour in total,

requires effort in terms of time and costs in regards to transportation. Furthermore,

additional problems concerning confidentiality may need to be taken into account.

It was proposed in [1] to utilise internet connectivity in order to perform validation

experiments from distributed geographical locations. As such, capabilities for real-

time data transfer capabilities had to be realised, and the required information from

each side defined by the developers and testers together.

The objective in [32] was to implement a VIL platform, where intersection con-

trol policies for autonomous vehicles, formerly only tested in simulation, were

tested with a real autonomous vehicle that interacted with multiple virtual vehicles,

at a real intersection, in real time. In such experiments, having all real autonomous

vehicles (as opposed to a single, real autonomous vehicle interacting with a number

of virtual vehicles) would have proven expensive; especially in the event that any of

the control policies were to fail and an accident ensued. At the same time, the ex-

periment yielded results that differed to those obtained when using a fully simulated

environment.

GrooveNet, a vehicle-to-vehicle (V2V) network simulator capable of achieving

communication between simulated vehicles, real vehicles, and between real and

simulated vehicles, was described in [25]. With this approach, it became feasible

to deploy a small fleet of vehicles in the field (e.g. in the order of a dozen) to test

protocols that in truth involved hundreds or thousands of vehicles, the rest of which

were simulated. GrooveNet was designed to investigate V2V issues; in particular,

with respect to wireless communication issues in mobility networks.

We conclude this section by drawing attention back to our own work described in

[12]. This VIL platform was developed with low cost and construction simplicity in

mind, in addition to the idea of offering human drivers in real vehicles, on real roads

or test tracks, opportunities to test and validate new ITS technologies in large-scale,

interconnected, simulated traffic scenarios. In what follows, we briefly review our
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platform’s existing architecture. We will then discuss the latest updates to our work

and provide example applications.

3 Platform Architecture

The first iteration of our VIL platform, described in [12], was constructed as a pre-

liminary prototype. Its setup was simple in design and consisted of an open source

microscopic traffic simulation package, emulating potentially thousands of virtual

vehicles, sitting on a workstation computer in a control room; together with some

ITS applications, also deployed on the workstation computer, written in Python. A

real vehicle was “embedded” into our traffic simulations, the real vehicle being rep-

resented in the emulations by an avatar; and data was transferred between the real

vehicle, and the workstation computer in the control room, over a cellular network

via a smartphone carried with the real driver. Some simple TCP-based client/server

programming sat on both the smartphone side and workstation computer side. Our

open source traffic simulation package of choice was SUMO [23]. This simulator

is designed to handle large road networks, and comes with a “remote control” in-

terface, TraCI (short for Traffic Control Interface) [45], that allows one to adapt the

simulation and to control singular vehicles on the fly. An illustration of the platform

setup that was described in [12] is presented in Fig. 1.

Some experimental ITS applications, developed primarily at the National Univer-

sity of Ireland, Maynooth in Ireland, that we then proceeded to demonstrate using

our VIL platform, in [12], consisted of the following: (a) an intelligent speed rec-

ommender system [29]; (b) emissions regulation, via context-aware hybrid vehicle

engine mode control [36]; and (c) local rerouting around an obstruction [17]. As

mentioned, Python scripts containing algorithms that were unique to each specific

ITS application were deployed on the workstation computer. These Python scripts

additionally contained some Transmission Control Protocol (TCP) server code for

handling connections with, and data flow to/from, the smartphone; as well as some

code that enabled our scripts as clients which communicated with SUMO, via TraCI,

the traffic simulator itself thus performing as a server. (TraCI uses a TCP-based

client/server architecture to provide access to SUMO.) These latter two aspects of

our scripts (i.e. the TCP-based components) were universal with respect to all three

of our ITS applications.

Let us review the setup of the platform with regards to two of these demonstrated

ITS applications more closely.
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Fig. 1 Illustration of the VIL platform setup described in [12]. In [12], the essential notion was that

ITS applications were deployed on the workstation computer also interfacing hundreds of vehicles

in SUMO, while a corresponding application was deployed on the smartphone which served as

the interface to the driver and the real vehicle. The simulated vehicles, and the real vehicle, both

provided inputs for the control algorithms and applications to be tested. (The real vehicle and com-

puter sub-images contained within this illustration were downloaded from https://openclipart.org

on 27 July 2016 and 22 September 2017, respectively.)

3.1 Intelligent Speed Recommender

The goal of this application was to detect approaching traffic bottlenecks, e.g. road-

work zones or traffic jams, and provide drivers with recommended travelling speeds,

ensuring that vehicles travelled at safe speeds and distances from the vehicles ahead

of them as they approached, entered and left the bottleneck. The notion was that a

traffic bottleneck could be emulated on demand in the virtual environment, while

proof-of-concept of the system was being demonstrated in the real vehicle on an
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empty road. Validating the system with the VIL platform included obtaining an ini-

tial assessment of a real driver’s attitudes and responses to the speed recommenda-

tions, as well as demonstrating how feedback from the real driver and vehicle could

be incorporated into the evolving traffic situation.

The application algorithm consisted of two key stages. First, the traffic scenario

in which the Host Vehicle (i.e. the vehicle of interest, receiving the recommenda-

tions) was travelling in was determined. A full list of potential traffic scenarios con-

sisted of: Free Traffic; Approaching Congestion; Congested Traffic; Passing Bottle-

neck; and Leaving Congestion. An estimate of the vehicle density surrounding, and

information concerning the speeds of, the Host Vehicle and the Next Vehicle (i.e. a

point of interest along the future trajectory of the Host Vehicle) were utilised by a

rule-based inference engine in order to determine the traffic scenario. Then, using

this (and some additional) information, a recommended travelling speed for obtain-

ing a safer distance to the Next Vehicle was calculated.

In our setup, in [12], the Host Vehicle was our real vehicle. For this vehicle, we

utilised a 2008 Toyota Prius 1.5 5DR Hybrid Synergy Drive, pictured on the left in

Fig. 2; however, any vehicle with an accessible interface or gateway to its onboard

computer, such as an OBD-II diagnostic connector, would have been suitable to use.

In the vehicle, we mounted a Samsung Galaxy S III mini (model no. GT-I8190N)

running the Android Jelly Bean operating system (version 4.1.2). The purpose of the

smartphone was to relay, over a cellular network, periodic updates from the vehi-

cle’s onboard computer in relation to its current speed, to the workstation computer

in the control room running SUMO; and to receive the recommendation messages

from the workstation computer and display them on a user interface for the driver.

We utilised the mobile data services of a commercial mobile phone operator for the

relay of data, where these services were provided using a 3G UMTS 900/2100 net-

work.

The hardware device that we used to form the connection between the smart-

phone and the Prius’ onboard computer (via its OBD-II diagnostic connector) was

a Kiwi Bluetooth OBD-II Adaptor by PLX Devices. This device was plugged into

the vehicle’s OBD-II diagnostic connector and communicated the data relating to

the vehicle’s current speed to the smartphone via Bluetooth. A variety of existing

smartphone applications were compatible for use with the Kiwi Bluetooth at the

time of our experiment. We decided upon Torque Pro1 given that an Android In-

terface Definition Language (AIDL) application programming interface (API) was

included with it for the development of third party plug-ins. We utilised this fea-

ture to design a new plug-in for Torque Pro for our speed advisory application.

The functionalities of this plug-in included: buttons for initiating and terminating

communication with the workstation computer, and the associated Java socket pro-

gramming for maintaining this communication and handling all of the data transfer;

1 Torque Pro by Ian Hawkins. Available from Google Play: https://play.google.com/

store/apps/details?id=org.prowl.torque. Last accessed on 28 September, 2017.
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Fig. 2 Field-test vehicles.

the capability to bind to the Torque Pro service running in the background, and thus

extract information in relation to the vehicle’s current speed from the Prius’ onboard

computer; and a unique user interface that showed to the driver the vehicle’s current

speed, as well as the traffic scenario that the algorithm running on the workstation

computer had determined that the Prius was currently travelling in, and the speed

recommendation that the algorithm consequently issued to the driver. This user in-

terface is shown in Fig. 3.

We also created a remote procedure call (RPC) framework based on TCP sock-

ets, which allowed us to directly call MATLAB functions from our Python script

that was deployed on the workstation computer. We did this because, for this partic-

ular demonstration, our ITS algorithm was initially developed using the MATLAB

Fuzzy Logic Toolbox (Version 2.2.14, R2011b). Thus, by utilising the RPC frame-

work, we were not forced to port the algorithm, developed in MATLAB, over to

Python.

For our demonstration then, the Toyota Prius was driven around a circuit defined

on the north campus of the National University of Ireland, Maynooth. The demon-

stration was performed at a time of day when the rest of the real traffic on the road

was minimal (i.e. early in the morning). The road map generated for use in SUMO,

and the real road circuit that the Prius travelled upon, were topographically the same.

Twenty-two virtual vehicles with different characteristics (i.e. maximum speeds,
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Fig. 3 Plug-in user interface for the speed recommender system demonstrated in [12].

sizes, acceleration and deceleration capabilities, etc.) were emulated in SUMO, in

real time, during the Prius’ test drive, along with a variety of local speed limits

(lower than the real speed limits on the road), in order to create bottlenecks of traffic

that involved both the simulated vehicles, and the Prius, which was represented in

the emulation by an avatar. At the beginning of the test, both the Prius, and its avatar

in the simulation, departed from the same positional starting point on the circuit.

Updates to the Prius’ position in the SUMO map were then made based (only) on

its real-time travelling speed as obtained through its OBD-II diagnostic connector.

Given that its real GPS coordinates, for example, were not used in making updates

to its position in the SUMO map, map-matching with respect to representing the

Prius’ actual position (on the real road) accurately in the SUMO map, was poor.

Thus, it was noted that the relay of real-time positional data would be critical for

much future work, and that better map-matching was an important element yet to

be included in the platform. Other results and observations from the demonstration,

e.g. in relation to the driver’s comfort at following the speed recommendations, were

reported in [12].

3.2 Emissions Regulation

In this ITS application, the different engine modes available to hybrid vehicles were

utilised to regulate emissions levels, in a fair manner for all participating vehicles,

over geographical zones where maximum levels of tolerated pollution were applied.

Specifically, the application sought to orchestrate the way in which each vehicle,

from a large fleet of hybrids, would uniquely utilise its internal combustion versus
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electric engine modes to regulate pollution, through simple communication signals

from a central infrastructure. A number of algorithms were provided in [36] as a

means of achieving this orchestration. In [12], the simplest of these algorithms was

demonstrated; namely, a simple integral controller was applied in a stochastic frame-

work.

Specifically, a threshold was set in regards to what the permissable level of global

CO emissions to be tolerated during our traffic scenario emulation would be; and

then feedback regulation was employed by a central infrastructure, which sent pe-

riodic signals to each of the hybrid vehicles participating in the scenario, such that

the global CO emissions in the scenario would be regulated around the threshold in

a manner that was fair to all participating hybrids. The signals that were sent by the

central infrastructure pertained to a probability value, as follows. In our scenario,

internal combustion engine use resulted in a vehicle emitting CO, whilst driving

in fully electric mode did not. Engine mode instruction for each unique vehicle, at

regular intervals in time, was dictated by a periodic “coin flip”, the result of this

“coin flip” (i.e. random number generation) being compared to the aforementioned

probability value. This probability value reflected what the global CO emissions

for the scenario were at the current moment. If current CO levels for the scenario

were zero, then the probability of any participating hybrid vehicle being allowed to

wholly utilise its internal combustion engine, for example, was one. This probability

degraded towards zero as global CO emissions in the scenario rose. The results of

the demonstration are provided in [12]. We describe, next, further specifics of the

demonstration setup in regards to our VIL platform.

It was assumed that we had access to all necessary environmental information

for our demonstration, such as the exact amounts of CO being emitted by each ve-

hicle (both virtual and real cars; this information was derived using the formulae

cited in [36]); and we set an artificial regional pollution threshold. For our real ve-

hicle that was embedded in the emulation to provide the proof-of-concept aspect of

the demonstration, we again elected to use the 2008 Toyota Prius 1.5 5DR Hybrid

Synergy Drive, as pictured on the left in Fig. 2. Again, we utilised the Samsung

Galaxy S III mini (model no. GT-I8190N) to relay, over the cellular network, peri-

odic updates from the vehicle’s onboard computer, via the Kiwi Bluetooth OBD-II

Adaptor, in relation to its current speed (this speed information was utilised on the

workstation computer to compute the Prius’ CO emissions via the formulae cited in

[36]); and to receive messages from the workstation computer in relation to engine

mode orchestration for the next time step (i.e. to receive the current global probabil-

ity value arising from the current global CO level).

The plug-in for Torque Pro that we developed for the application again consisted

of buttons for initiating and terminating communication with the workstation com-

puter, and the associated Java socket programming for maintaining this communi-

cation and handling all of the data transfer; and again had the capability to bind to

the Torque Pro service running in the background, to extract information in relation
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to the vehicle’s current speed from the Prius’ onboard computer. The user interface

again showed the driver of the Prius its current speed; and this time, also displayed a

message in relation to what engine mode the driver of the Prius should currently be

employing, after the plug-in performed one of its “coin flips” and compared the ran-

dom number obtained to the corresponding most recent probability value received

from the workstation computer. The user interface additionally consisted of two but-

tons that allowed the driver to engage or disengage automatic engine mode control.

When automatic engine mode control was engaged, signals were forwarded from

the smartphone, via Bluetooth, to a mechanical “finger” device that was mounted

inside the Prius. The “finger” physically interacted with the Prius by pushing and

releasing a drive mode switch in the vehicle. This mechanical device is shown in

Fig. 4. The user interface of the plug-in was shown in [12].

Fig. 4 The mechanical device.
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Given that the control algorithm itself had been initially developed in MATLAB,

we again made use of our RPC framework to directly call MATLAB functions from

our Python script that was deployed on the workstation computer. As such, we were

again not forced to port the algorithm, developed in MATLAB, over to Python. For

convenience, we also utilised, in the demonstration, the same road map and SUMO

configurations (with respect to the number and type of virtual vehicles in the em-

ulation) that we did for the speed recommender application. Again, updates to the

Prius’ position in the SUMO map were made based (only) on its real-time travelling

speed.

In our demonstration, we applied a constant threshold, in regards to permissable

global CO emissions, over the entire map. However, we recognised that obtaining

positional information from the real car (e.g. GPS coordinates) would be necessary

if a constant threshold was not applied over the whole map; but rather, to subre-

gions. In such cases, positional data would be needed from the vehicle to determine

accurately whether or not it was inside a region where a pollution threshold was en-

forced. Furthermore, we noted that incorporating event-driven logic into our Python

script and plug-in, to activate the application when the real vehicle entered a geo-

graphical zone where pollution monitoring was ongoing, would be ideal. Finally, we

noted that, in reality, the exact quantity of CO being emitted by each vehicle would

not be known to a central infrastructure. Furthermore, in more realistic scenarios,

not only hybrid vehicles participating in the service would be driving around on

the map. So too, driving around, would be non-participating hybrids; and also vehi-

cles that were not hybrids and thus could not have their engine modes affected by

the application. Therefore, knowledge of CO levels in a region would likely come

from external measurements; for example, from a meteorological agency utilising

sensors. To imitate such in our VIL platform, we noted that another ideal future

enhancement to the platform would be an ability to incorporate real-time and/or

real-world information in order to bring more realism or proof-of-concept capabil-

ities to our demonstrations; for example, live news events, traffic jam reports, and

weather and pollution information from meteorology organisations, could be taken

into account in generating or validating test scenarios.

3.3 On the Existing Architecture

While we succeeded, in [12], in developing a preliminary prototype of our VIL

platform, and demonstrated some ITS applications, and thus exhibited the concept

of the VIL platform that we aimed to construct, it is clear from the discussion above

that a number of ideal components or enhancements to the VIL platform remained

yet to be added. In particular:

(i) our original design permitted only a single, real vehicle to be embedded

into the platform (this issue was not discussed above but will be explored in

Section 5);
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(ii) access to real-world information was limited to what the real vehicle’s on-

board diagnostics (OBD-II) and/or what the smartphone, carried on board

the real vehicle with the driver, could provide;

(iii) our Python scripts were not modular, in that they did not exhibit a plug-and-

play structure, in regards to what ITS applications were required by a user

at any given point in time;

(iv) our Python scripts were not event-driven, with respect to what ITS applica-

tions were in-use, or active, in a traffic scenario at any given point in time;

(v) and our platform exhibited poor map-matching in regards to the incorpora-

tion of real-world positional information from the embedded hardware into

the platform.

Thus, in this current work, we now aim to report on some improvements that we

have made to our VIL platform since its inception in [13] and [12]. These improve-

ments are as follows:

(I) multiple real vehicles can now be embedded through threading and a tick-

eting system;

(II) real-world information is available from a range of different sources;

(III) we have moved towards code modularity and event-driven capabilities;

(IV) and we have improved map-matching for those applications that are location-

aware.

In the next section, we describe these improvements in more detail. Our aim is

to maintain, as much as possible, a low cost in regards to platform construction,

and ease of availability in terms of the components required, while also extending

upon the range of ITS applications that the platform may be used to demonstrate

and validate.

4 New Components and Enhancements

An account of the latest components added to the VIL emulation platform follows.

As mentioned, our aim is to, through the addition of new features and enhancements,

increase the platform’s versatility and improve its functionality.

4.1 Scalability: Multiple Real Vehicle Embedding

The original design of our platform permitted only a single real vehicle to be em-

bedded into a SUMO simulation. To add more real vehicles, we exploited the fact

that, in the parent process of our Python scripts, TraCI provides access to SUMO

via a single port; and multiple real vehicles can be represented in SUMO by differ-

ent vehicle IDs. Thus, multiple real vehicles can be embedded in a single simulation.
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Threading, and the use of a ticketing system, were implemented in the server

subprocess of our Python application scripts (i.e. the subprocess that communicates

with the smartphones). Threading permits the handling of multiple client calls at

once. The procedure was as follows. A single port is reserved for communication

with the smartphones in our server subprocess. When a new real vehicle joins the

network and wishes to utilise the ITS application under test, it communicates its

presence via its smartphone to the server. Once the server has accepted the connec-

tion, the real vehicle is provided with a unique ticket for identification purposes; pa-

rameters associated with the real vehicle (e.g. its speed and location) are initialised;

and, from there, communication with the real vehicle is passed to and dealt with in

a newly created, personal, background thread for continued interaction between the

server and client. That is, the real vehicle can now send continued data regarding

its state, and the server can pass back information continually, such as alerts and

recommendations.

Finally, we note that this modification to the platform permits, not only multiple

real vehicles to be added to a single simulation such that they may all drive around in

it concurrently; but also enables single real vehicles that leave the scenario and need

to re-enter it again later, at a future time step, to be successfully re-added when (or

each time that) they do. We will explore a benefit of being able to embed multiple

real vehicles in the use case presented in Section 5.

4.2 Information Exchange: Additional Sensors and Other Devices

In [12], our platform architecture utilised the OBD-II diagnostic connector of a real

vehicle to access data from its engine control unit (ECU). The particular data ac-

cessed is typically application-driven, and might consist of the vehicle’s speed, the

state of charge of its high voltage battery, etc. The type and amount of data available

to ITS application testing need not be limited to what the OBD system can pro-

vide, however. Real vehicles can be equipped with additional sensors and devices.

Furthermore, other forms of real-world and/or real-time data can be obtained (for

example, from meteorological organisations) and incorporated into testing, all in

order to enable the available information about the real vehicle, driver, and the real

vehicle and driver’s surroundings, to be expanded upon. Some of these additional

devices and/or the data that they provide can be incorporated into the VIL platform

and used for validating a wider range of ITS applications in a more comprehensive

or realistic manner. Thus, we now discuss some new sensors and other devices that

we have utilised recently, in terms of extending the capabilities of our VIL platform.
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Smartphones

Besides acting as devices through which to relay, to a workstation computer over a

cellular network, information obtained from a real vehicle via its OBD-II diagnostic

connector; and as devices through which to receive messages from a workstation

computer and display them on a user interface for a driver; smartphones have the

capacity to provide other uses as well. By themselves, for example, they carry their

own sensor compliments, such as GPS and accelerometers, and can thus provide

extended information in addition to what is available from the real vehicle’s ECU.

They can receive and process human input (e.g. voice, touch or text) through a user

interface, as provided by a driver. Smartphones have processing power and can run a

range of applications. Some applications may involve the preprocessing of data to be

sent to a workstation computer; and/or involve computations, algorithms and actions

concerning the data received from a workstation computer. Other applications (or

subprocesses of an application) may involve processing information received from

other, additional devices onboard a real vehicle, or carried by the driver, such as the

wearable technology that we describe next.

Wearable Technology

With the rise of the Internet of Things (IoT), wearable technology (i.e. clothing

and accessories incorporating computer and advanced electronics, such as Microsoft

Band [26], Apple Watch [3] and Android Wear [2]) has become readily available.

Wearables can provide additional information regarding the state of a real driver;

for example, Microsoft Band and Apple Watch contain heart rate sensors. For in-

stance, recently, at University College Dublin, in Belfield, Ireland, in collaboration

with IBM Research – Ireland, one of our team’s research projects has consisted

of embedding an electric bicycle into a SUMO simulation and artificially creating

regions where transport-related pollution is high (e.g. a busy section of road with

many buses and trucks) [38, 35]. The bike is fitted with a controller that increases

the output from the electric motor in order to aid the pedalling bike rider in power-

ing the bike when the rider enters one of these “tail-pipe” polluted areas. The aim

is to keep the bike rider’s breathing rate lower so that they do not inhale as much

of the air pollution. To monitor the heart and ventilation rates of the bike rider, they

were fitted with ventilation masks (i.e. a COSMED Spiropalm 6MWT, with a fully

integrated pulse oximeter) during the application testing, which took place both on

a real road and in a laboratory. A video demonstrating the proposed system can be

found at [39].

Gas Sensors and Weather Stations

In the emissions regulation example described in Section 3, we briefly mentioned

the notion of incorporating real-world weather or pollution information, as mea-
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sured by meteorology organisations for example, in order to create more realistic

test case scenarios or proof-of-concept demonstrations. Gas sensors, e.g. [8], can

be fitted to real vehicles embedded in simulations for validation purposes too. As

an alternative example application, consider [46], wherein the source localisation

problem for a natural gas leak in an urban setting was considered. As an extension

to this work, to provide proof-of-concept and improve upon the theoretical mod-

els presented within it, some members of our research team, in collaboration with

IBM Research – Ireland, have since performed experiments using real CO2 sensors

[8] positioned in a two-dimensional space (as well as fitted on parked cars), and

demonstrated gas leaks coming from different point sources. Experimentation with

the sensors was possible due to the ease of incorporating the compact modules as

add-on components of microprocessor-based equipment via serial communication,

and also due to their technical features such as low power consumption, wide mea-

surement range, fast response rate and high accuracy. The solution approach to the

source location problem then involved using the information obtained from the CO2

sensors. The measurements from the sensors were combined with wind informa-

tion from weather stations and processed with a source localisation algorithm based

on advection-diffusion equations [46]. It is worth noting that an off-the-shelf pro-

fessional weather station, such as the one used in our investigations [44], not only

provides wind information from a wind metre, but also incorporates a temperature

sensor, humidity sensor, barometric pressure sensor, light sensor and a rain gauge,

which allows it to be used in applications such as weather estimation and weather

forecasting.

RFID

Radio-frequency identification (RFID) is a generic term for technologies that use ra-

dio waves to automatically identify entities [34]. Several methods of identification

exist, but the most common is to store a serial number that identifies an entity on a

microchip that is attached to an antenna. The chip and antenna together are called an

RFID transponder or tag. The antenna enables the chip to transmit the serial number

to a reader. The reader converts the radio waves reflected back from the RFID tag

into digital information that can then be passed on to a computer to make use of.

A passive RFID tag draws power from the field created by the reader and uses it

to power the microchip’s circuits. The chip modulates the waves sent back to the

reader by the tag, and the reader converts these new waves into digital data. In this

way, passive tags do not require a local power source. In addition, unlike barcodes,

RFID tags do not need to be within the line of sight of the reader.

In some recent experiments, we utilised RFID in combination with our VIL plat-

form to study problems relating to the localisation of missing entities by considering

parked vehicles as service delivery platforms [43, 9]. Specifically, the notion was to

utilise vehicles that are parked for extended periods of time in dense, urban areas

to detect and track moving, missing objects using RFID technology. Such entities
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might consist of a missing patient with dementia, a lost pet or a stolen vehicle; e.g.

a bicycle. The entities carry with them a passive RFID tag, while the readers are

located with the parked vehicles. The advantages of using a network of parked ve-

hicles to locate a missing entity include, first, the sheer number of vehicles that are

owned by people, and the fact that, for 96% of the time on average, these vehicles

are parked [33]. In other words, the network is large. The network also does not

require dedicated maintenance, and technology upgrades are easy [24]. Addition-

ally, energy infrastructure and planning permissions are not required to establish the

network. The use of the VIL platform permits us to experiment with a range of algo-

rithms; e.g. algorithms concerning the density of vehicles actively searching for an

RFID tag at any point in time versus the time taken until localisation of the missing

entity occurs. One such algorithm was provided in [43]. Realistic parking data from

urban environments can be utilised and represented in an emulated scenario while

proof-of-concept of the system in real life and in real time is being demonstrated.

Preliminary results were provided in [43]. Further investigations are ongoing.

Another, related, recent use of RFID in research concerned the implementation

of a low-cost, low-power, easily integrated cyclist collision prevention system for

in-car deployment. The result of another collaboration between University Col-

lege Dublin and IBM Research–Ireland, this system sought to inform car drivers of

nearby cyclists, based on cyclists being equipped with passive RFID tags, and cars

containing readers. Further details can be found in [27]. Finally, we mention [18],

wherein geo-fences (i.e. virtual geographic boundaries) were employed to specify

areas of low pollution around cyclists. Similar to the emissions regulation applica-

tion as discussed in Section 3, the emissions level inside a geo-fence was controlled

via a coin tossing algorithm that determined the engine mode to be next employed

by a participating hybrid vehicle. The algorithm was triggered when a vehicle de-

tected a cyclist with RFID. The system was demonstrated with our VIL platform.

High-Precision GPS Information

We have utilised the high-precision, DGPS/AGPS-enabled, GPS travel recorder, Qs-

tarz BT-Q1000XT [7], in our investigations to enhance the position estimation ca-

pabilities of real vehicles; and with the smartphone application Torque Pro, which

permits the use of external (Bluetooth) GPS devices, we have been able to pass such

information to the VIL emulation platform. This makes the localisation of avatars

in SUMO a more reliable process, in terms of representing real-life events (i.e. the

position of the embedded cars, in this case) with a higher level of accuracy.
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4.3 Map Matching: Speed and Position Corrections

The incorporation of real-world information from the embedded hardware into the

VIL emulation platform should be performed as accurately as possible, so that the

real-world information is represented with high fidelity in the simulated experi-

ments. Two important variables obtainable from an embedded vehicle are its po-

sition and speed. Thus, we pay special attention to those next.

Concerning information pertaining to a real vehicle’s speed, it is been reported

that the speed measurements obtained from an ECU do not generally match the

speed on the car dashboard display, and this has two main causes: i) a typical (inten-

tional) over-read in most standard speedometers; and ii) a different wheel diameter

from the factory specification [42]. GPS speed measurements are also available, for

example, from a smartphone, and optionally via Torque Pro, as an alternative.

In the case of position information, the main data source is GPS localisation.

However, GPS measurements are highly sensitive to environmental and/or contex-

tual factors, and they can be strongly degraded by atmospheric effects (e.g. iono-

spheric delay), multipath effects (e.g. from buildings), outdated ephemeris data, and

the GPS receiver quality (e.g. inefficient algorithms/circuitry). Accordingly, we have

proposed different methods for mitigating the position errors from traditional GPS

measurements. These methods include the use of:

1. a high-precision, DGPS/AGPS-enabled GPS receiver, e.g. [7], which delivers

more accurate GPS measurements than the average smartphone’s GPS unit;

2. Kalman filtering, which improves the position estimation accuracy by fusing

GPS information (e.g. latitude, longitude, precision) with sensor data (e.g. speed

from OBD-II, bearing from smart device gyroscope) and aggregated data (e.g.

bearing estimation from previous GPS locations, speed from GPS);

3. passive RFID tags, which are (intentionally) placed at dedicated road-side loca-

tions, and can transmit their position information once they are detected by the

car;

4. map matching, with respect to the road network used in the simulated environ-

ment, using the method traci.vehicle.moveToXY2;

5. and/or parked vehicles, used as anchor nodes for cooperative positioning (given

the availability of V2V systems) [28].

Of the above methods, (1), (2) and (3) have been successfully implemented and

tested, while (4) is currently being implemented, and (5) is planned for a future

design.

2 Under typical conditions, SUMO only allows vehicles to be on roads, and thus if an attempt is

made to move a vehicle to an arbitrary location, then SUMO will place it on the nearest road to that

location, taking into account certain filters. One of these filters uses bearing information so that the

vehicle is map-matched to the nearest road with an orientation similar to the bearing provided by

the user.
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4.4 Transmission Frequency and Code Modularity: Application

Logic

In the first iteration of our platform design, once a connection was formed, infor-

mation between the real vehicle and the workstation computer was transmitted once

per second. This steady, periodic rate was maintained throughout the duration of

a simulation for simplicity. Changing the information transmission frequency, e.g.

to different, event-inspired transmission frequencies, is something that makes sense

for a number of applications, however. For instance, in the “detect and track a mov-

ing, missing object using RFID technology” application described in Section 4.2,

one transmission frequency might be utilised while the detection stage of the appli-

cation is active, whilst a different transmission frequency could be preferential once

the object is located and the tracking function kicks in. Investigations regarding this

are currently ongoing. As part of the ENABLE-S3 project [10] (an ongoing project

funded by the ECSEL Joint Undertaking, which in turn receives support from the

European Union’s HORIZON 2020 research and innovation programme, as well as

from a number of European countries), we are additionally continuing the develop-

ment of the VIL platform such that ITS applications under test may be inserted in

a ‘plug and play’ capacity and activated, deactivated or modified in behaviour on

demand.

5 A Final Illustrative Use Case

In this section, we conclude the discussion on our VIL platform improvements by

returning to the notion of embedding multiple real vehicles into a single emula-

tion. These vehicles could be embedded either concurrently or consecutively, the

latter instance also being applicable to where there might be only a single real ve-

hicle, but it is to exit and enter a scenario multiple times. We will now provide a

use case example of a recently proposed speed advisory system (SAS) [14, 15] in

which embedding multiple real vehicles (as opposed to a single one) is a necessary

requirement for adequately validating the system when utilising the VIL platform.

The reasoning behind this is presented below, in Section 5.1.

The objective of the SAS is to implement a consensus algorithm to guide a set

of vehicles towards a common driving speed [15]. An innovation of the SAS is that

consensus is achieved over a multi-layer network, where parallel network topologies

of connected vehicles are superimposed. The reason for the use of these parallel net-

works is that, in this way, state obfuscation is possible, with the benefit that common

driving speed is attained with no vehicle knowing the exact state of other vehicles

participating in the service. The SAS can be demonstrated using our VIL platform,

where we would have (for instance) the two real field-test cars shown in Fig. 2 par-

ticipating in the service along with many simulated vehicles. We direct the reader to
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[15] for further details on the SAS algorithms, and focus our attention here on the

characteristics of the VIL demonstration instead.

In our set-up, we considered the road network of the University College Dublin

campus in Belfield, Ireland. A map of the campus was imported into SUMO from

OpenStreetMap. A maximum allowed link speed of 30km/h was set on the cam-

pus roads to reflect real-world speed limits, and a maximum allowed link speed of

50km/h was set on roads on the approach to the campus (i.e. on links on the ap-

proach to the campus entrance gates). The road network is shown in [15, Fig. 4]. In

regards to the simulated traffic in our demonstration, we emulated a morning rush,

with passenger vehicles randomly being allocated to enter one of three possible en-

trance gates, and then making a random decision to head to one of three possible

car parks (see [15, Fig. 4]). Vehicles entered the network at a rate of one vehicle per

twenty seconds, for twenty minutes, at maximum permitted departure speed. Other

attributes that we assigned to the simulated vehicles can be found in [15].

In a certain test case scenario of interest to our current discussion, no vehicle

(simulated or real) was instructed to be a leader, and thus speeds were expected

to converge towards the average. The time step size used in the simulation was

0.1s; however, information was only exchanged every 1s between the workstation

computer and the smartphones carried in the real vehicles. A VIL emulation was

performed to test the convergence of the SAS.

5.1 Discussion

In the case where only a single real vehicle is embedded in the VIL platform while

the SAS described above is under test, a potential arising issue is that the real ve-

hicle can unintentionally become a leader. This is because a real driver’s ability to

follow speed advice is often less precise than a simulated car’s ability. Thus, the real

vehicle pulls the convergence of the algorithm in an up or down manner depending

on its own speed value. Having multiple real vehicles embedded, which is now pos-

sible with our VIL platform, paves the way to negating this issue, supposing that all

real drivers are attempting to follow the speed advice.

In addition, as mentioned prior, our platform now also permits for vehicles that

leave a scenario and return to it later, to be “re-embedded” when (and each time)

that they do. Not only is this an important feature for fault tolerance, like intermit-

tent connection loss between a real vehicle and the workstation computer; but it also

permits for us to accommodate situations, for example, where an application (like

the above SAS) is active in a particular geographical zone, and real drivers are enter-

ing and exiting that zone multiple times throughout a demonstration. Each time that

they do enter the zone, they can be reincorporated into the scenario as participants.
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Finally, the methods for mitigating positional errors obtained from traditional

GPS measurements that were described in Section 3 give us an improved capacity

to map match and thus track the positions of the real vehicles on the road network

in SUMO.

6 Conclusions and Future Work

The addition of new features and enhancements to our VIL emulation platform in-

creases its versatility and improves its functionality in regards to ITS application

demonstration and validating. Future features and enhancements that we would like

to add include the capacity for our platform to be able to incorporate and handle

V2V communications. To achieve this, the integration of our platform with a net-

work simulator, and an ability of the platform to process information from real on-

board units and roadside units (i.e. communication devices), will be necessary.
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