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Abstract A novel system for safe speed recommendation, based on a cooperative
method for vehicular density estimation and on the intelligent determination of the
traffic scenario, is presented.

1 Introduction

At present, Intelligent Speed Adaptation (ISA) systems, as a part of Advanced
Driver Assistance Systems (ADASs), have become a fundamental part in the design-
ing of safe vehicle operation systems, with the aim of improving driver/pedestrian
safety using environmentally friendly applications [1]. Statistically, ISA systems
always represent an improvement in the reduction of CO2 emissions and fuel con-
sumption, and on saving/prediction of accidents (fatal, serious and slight) [1]. Ad-
visory systems rely on the calculation of safe recommended parameters to be pre-
sented to the driver using an appropriate display system [2]. Thus, in general, ad-
visory ISA methodology involves less algorithmic and analytical complexity, and
constitutes the first step towards more comprehensive (mandatory) systems, and the
enhancement of Adaptive Cruise Control (ACC) algorithms [3]. ISA systems can be
greatly improved by including relevant information from different sources such as
environmental (weather, visibility, etc) and road (vehicular density, speed limits, etc)
information, thus resulting in more reliable systems [4]. A recent application based
on weather information can be found in [5]. Regarding road information, vehicu-
lar density represents a very important factor in designing systems for safe speed
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advising, because from it, it is possible to obtain a more realistic awareness of the
general traffic situation [6]. In this sense, most ADASs involving vehicular density
estimation techniques are based on the use of loop detectors [7, 8]. However, there
are many drawbacks in using this kind of dedicated infrastructure device: 1) vehicu-
lar density is computed only for fixed road sections (between two consecutive loop
stations), i.e. the available information is space-discontinuous; and 2) density varia-
tions cannot be properly detected at each location with a low density of loop detector
stations (but a high density of them is not desirable from the monetary point of view)
[7]. Moreover, if we think in terms of a decentralised scheme, then vehicular den-
sity should be estimated for each node belonging to the vehicular ad-hoc network
(VANET), making even less feasible the use of loop detectors. Thus, more practical
ways to estimate vehicular (traffic) density are required, such as the one presented
in [6]. With the above in mind, we propose a two-stage methodology for intelligent
speed advising: the first stage concerns traffic scenario determination based on a
cooperative methodology using vehicle-to-vehicle (V2V) communication for vehic-
ular density estimation, and a rule-based system (Section 4), and the second stage
concerns the calculation of safe parameters based on the proposed traffic scenario
determination (Section 5). Experimental validation is presented in Section 6, and we
conclude the paper with Section 7.

2 Intelligent Speed Adaptation System

ISA systems can be classified as either static or dynamic. A static ISA system is a
system where the recommender is supported only on fixed/localised speed limits,
whereas a dynamic ISA system also uses environmental information to update the
recommended speed. ISA systems can also work in advisory, voluntary or manda-
tory modes. In an advisory mode, the function of the ISA is to recommend a speed
to the driver, and in mandatory mode a control action is used to enforce the advised
speed. For dynamic-mandatory cases it has been shown that ISA systems are able
to provide safety benefits in terms of a reduction of up to 44% in fatality [5]. Recent
developments in ITS infrastructure have made possible the development of more ad-
vanced ISA systems. In this paper we describe one such a system. Our system allows
the inclusion of relevant available information using current traffic information and
road speed limits for calculating the recommended speed. We propose to use V2V
communication as a main tool for vehicular density calculation rather than loop de-
tectors, with the aim of obtaining space-continuous information through a cheaper
approach (as opposed to using dedicated infrastructure devices). Consequently ve-
hicular density is used as one of the inputs of a rule-base reasoning engine designed
to determine the current traffic scenario; the scenario that will be used to dynam-
ically calculate the final recommended speed. The main advantage of using such
an inference engine is the possibility of including expert knowledge in an easy and
intuitive way via IF-THEN rules. Finally, we assess our speed adaptation scheme
using a traditional safe policy applied to the resulting inter-vehicle distances.
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3 Procedure

We are proposing a two-stage methodology for intelligent speed advising: a) the first
stage focuses on traffic scenario determination, and b) the second stage regards safe
parameters calculation. In the first stage we consider the problem from a spatial-
temporal perspective. We begin this process by defining a point of reference that
represents a point along the future trajectory of the vehicle for which the recom-
mender is being constructed. Thus, the following concepts arise:

- the Host Vehicle (HV) is the vehicle for which the recommendation is being
constructed.

- the Next Point of Interest (NPI) is a coordinate in the near future of the Host Ve-
hicle’s evolution, i.e. a point located in the future trajectory of the Host Vehicle.

- the Next Vehicle (NV) is the (potentially virtual) vehicle that is currently closest
to the NPI.

Once the Next Vehicle has been selected, the calculation of the vehicular density
is obtained as the vehicle density in some prespecified area around the NPI. Due to
the spatial-temporal nature of the problem, vehicular density is calculated for both
the Host Vehicle and the NPI.

The current traffic scenario is determined by using the calculated vehicular den-
sity and speed for both the Host and Next Vehicles, and the variation of the Host
Vehicle speed as the inputs of an inference engine. Our inference engine is made up
by a set of 28 IF-THEN rules.

For the second stage of the procedure, we propose to calculate the recommended
speed using a weighted formula that combines both the Host and Next Vehicle
speeds, as well as density information.

Finally, once the recommended speed is obtained, we use a widely known policy
for safe recommended distance.

For ease of exposition, we make the following assumptions:

• our road setup is as depicted in Fig. 1:

– a five-section (S1-S5), two-lane (L1-L2), one traveling direction straight road;
– a 2D Cartesian system for spatial representation of the road (top view) where

the x axis is the direction of travel;
– a stationary bottleneck represented by the narrowing of the road (S3), emulat-

ing a closed lane e.g. due to an on-road accident;

• and

A1 all vehicles belonging to the VANET have a compatible V2V system;
A2 all required information can be acquired using suitable devices/techniques,

and then transmitted using such a V2V system;
A3 processing times for V2V communication and outputs calculation are greatly

shorter than intervals between instants for speed recommendation.
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Fig. 1 Road setup used.

4 Methodology: First Stage

In the first stage of the proposed ISA methodology, the basic idea is to use V2V
communication to obtain an estimation of the vehicular density. With such informa-
tion, in addition to speed values and other relevant data, we determine the current
traffic scenario using a rule-based system.

However, as the traffic scenario determination is a spacial-temporal problem,
other sources of information must be considered in addition to the Host Vehicle
information. This demands the selection of a vehicle placed at a point in the ahead
road-section in which the Host Vehicle is traveling on, in order to represent a point
along the future trajectory of the Host Vehicle. Hereafter, such a point is the NPI,
and the vehicle representing the NPI will be referred to as the Next Vehicle (which
is not necessarily the vehicle immediately preceding the Host Vehicle).

4.1 Selection of the Next Point of Interest and the Next Vehicle

The NPI is a reference placed at a distance xahead in front of the Host Vehicle.
As we are considering a straight road collinear to the x axis, we define the NPI at
(xH + xahead ,yH), where (xH ,yH) is the position of the Host Vehicle.

In order to select the Next Vehicle to represent the NPI, we look inside a circle
with radius rN centered at (xH + xahead ,yH) as shown in Fig. 2. If no vehicles are
inside the circle (see Fig. 2b), then we let the Next Vehicle be a virtual vehicle
located at (xN ,yN) = (xH + xahead ,yH); otherwise the closest vehicle to the NPI is
selected (see Fig. 2a).

(a) Vehicles inside of rN (b) No vehicles inside of rN .

Fig. 2 NPI location: a) the Next Vehicle is the nearest vehicle to (xH + xahead ,yH), i.e. the blue
one, and b) the Next Vehicle is a virtual vehicle located at (xH + xahead ,yH).
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4.2 Vehicular density estimation

The vehicular density estimation for any sampling node in the VANET can be car-
ried out based on [7], as follows: 1) the sampling node broadcasts a poll message,
2) all nodes receiving the poll message respond to the sampling node with a reply
message, and 3) vehicular density δ for the sampling node is given by

δ (t) =
nr +1

A
, A =

{
πr2

D, if 2rD ≤WR =WLNL.
2rDWLNL, otherwise. ,

where nr is the number of returned replies inside the polling area A, WR is the road’s
width, WL is the lane’s width, and NL the total amount of lanes. Note that the factor
+1 is added to the factor nr to include the sampling node into the density equation.
However, if the sampling node is a virtual vehicle, then the vehicular density is not
1
A but rather zero (see Fig. 2b).

4.3 Traffic scenario determination

Once the vehicular density for both Host/Next Vehicles is calculated, we can use
that information in addition to the Host/Next Vehicle speeds in order to determine
the traffic scenario. In this paper we proposed to use an inference engine for that
purpose, as explained in the following subsections.

4.3.1 Inference engine design

The inference engine consists of a (user-defined) knowledge base for assigning
values to the outputs according to the values of the inputs. Let us define the in-
puts/outputs variables, to latter define the base of rules that relates them.

Inputs/outputs definition

Five variables are chosen as inputs: the normalised Host Vehicle’s velocity (V̄H );
the normalised Next Vehicle’s velocity (V̄N); the normalised vehicular density for
the Host Vehicle (δ̄H ); the normalised vehicular density for the Next Vehicle (δ̄N);
and the variation on the Host Vehicle’s velocity ∆VH (t) = VH (t)−VH (t−1). In
addition, five variables are chosen as outputs: Free Traffic (FT); Approaching Con-
gestion (AC); Congested Traffic (CT); Passing Bottleneck (PB); and Leaving Con-
gestion (LC).

The sets Low (L) and High (H) are for the inputs V̄H,N and δ̄H,V , the sets Negative
(N), Zero (Z) and Positive (P) are for the input ∆VH (t), and the sets Not (N) and
Yes (Y) are for all the outputs. Membership functions are shown in Table 1.
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Finally, the traffic scenario is classified according to the following equation:

T (t) = argmax(FT(t),AC(t),CT(t),PB(t),LC(t)).

Table 1 Membership functions.

Type Variable Set Membership function

Input

V̄H,N , δ̄H,V
L [0 0 0.1 0.8]
H [0.1 0.8 1 1]

∆VH (t)
N [-100 -100 -7.5 -2.5]
Z [-7.5 0 7.5]
P [2.5 7.5 100 100]

Output FT,AC,CT,PB,LC N [0 0 1]
Y [0 0.8 1 1]

Table 2 Base of rules for traffic scenario determination.

Rule Inputs Outputs
[V̄ H , δ̄H , V̄ N , δ̄N ] ∆V H [FT, AC, CT, PB, LC] WEIGHT

1
[L,L,L,L]

N [Y,N,N,N,N] 0.6
2 Z [Y,N,N,N,N] 0.6
3 P [N,N,N,N,Y] 1.0
4 [L,L,L,H] - [N,Y,N,N,N] 1.0
5

[L,L,H,L]
N [Y,N,N,N,N] 1.0

6 Z [N,N,N,N,Y] 1.0
7 P [N,N,N,N,Y] 1.0
8 [L,L,H,H] - [N,Y,N,N,N] 1.0
9

[L,H,L,L]
N [N,N,Y,N,N] 1.0

10 Z [N,N,N,Y,N] 1.0
11 P [N,N,N,Y,N] 1.0
12 [L,H,L,H] - [N,N,Y,N,N] 1.0
13 [L,H,H,L] - [N,N,N,Y,N] 1.0
14 [L,H,H,H] - [N,N,Y,N,N] 1.0
15

[H,L,L,L]
N [N,Y,N,N,N] 1.0

16 Z [Y,N,N,N,N] 1.0
17 P [Y,N,N,N,N] 1.0
18 [H,L,L,H] - [N,Y,N,N,N] 1.0
19

[H,L,H,L]
N [Y,N,N,N,N] 1.0

20 Z [Y,N,N,N,N] 1.0
21 P [N,Y,N,N,N] 1.0
22 [H,L,H,H] - [N,Y,N,N,N] 1.0
23

[H,H,L,L]
N [N,N,Y,N,N] 0.8

24 Z [N,N,Y,N,N] 0.8
25 P [N,N,N,Y,N] 1.0
26 [H,H,L,H] - [N,N,Y,N,N] 1.0
27 [H,H,H,L] - [N,N,N,Y,N] 1.0
28 [H,H,H,H] - [N,N,Y,N,N] 1.0
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Base of rules

The rules Rk for relating the five inputs to the five outputs are of the form

Rk : IF input1 = •AND... inputi = •, THEN (out put1 = •AND...out put j = •)∗wk,

according to values in Table 2, which are supported by applying both traffic flow
theory [9] and common sense to each particular case, and considering the values
taken for each input.

4.3.2 Normalisation of variables

In order to provide a general interpretation of the rules, we use normalised values
instead of raw ones. Such a normalisation process depends on each kind of input, as
presented in the following subsections.

Velocity normalisation

This normalisation depends on the raw value of the velocity, the Maximum Individ-
ual Speed (MIS) of the vehicle, and the Road Speed Limit (RSL) of the road section
in which the vehicle is traveling on. The normalised velocity is given by

V̄H,N (t) = min
(
αspeed ∗ṼH,N (t) ,1

)
,

αspeed =
1

max(MISH,N ,RLSH,N)
, ṼH,N(t)=

{
VH,N(t), ifMISH,N>RLSH,V

f1(RLSH,V ,MISH,N ,VH,N(t)) otherwise.
,

where f1 provides a value corresponding to the linear interpolation of the VH,N (t)
using a curve given by {(0,RLSH,V ) ,(0,MISH,N)}. Note that min(•,1) ensures that
the maximum value of V̄H,N (t) is 1 even when the velocity overcomes the corre-
sponding RLS.

Vehicular density normalisation

This normalisation depends on the raw value of the vehicular density, the polling
radio rD, and the Maximum Allowed Density (MAD) curve (constructed from Table
3). The normalised vehicular density can be calculated as

δ̄H,N (t) = min
(
αdensity ∗δH,N (t) ,1

)
, αdensity =

1
f2 (rD)

,

where the value of f2 (rD) (representing the MAD given rD) is calculated accord-
ing to a linear interpolation using data in Table 3 (obtained from simulation tests).
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Again, min(•,1) assures that the maximum value of δ̄H,N (t) is 1 even when the
vehicular density overcomes the corresponding estimated MAD.

Table 3 Maximum allowed density ( f2) given rD.

rD 7.5 8.5 9.5 11 13 15 19.5 21
f2(rD) 7 6 5.5 5 4.5 4.2 3.9 3.8

5 Methodology: Second Stage

Once the traffic scenario is determined, we can use such information to design our
Advisory ISA methodology. However, since the definition of the recommended
speed VR (and as a consequence, the recommended distance DR) should be based
upon both the determined traffic scenario and the Next Vehicle’s velocity (VN), then
we first introduce a model for updating VN in cases of a virtual Next Vehicle.

5.1 Updating speed in virtual Next Vehicles

If a virtual Next Vehicle is chosen, then both the location and velocity of the Next
Vehicle have to be calculated from other sources rather than a real vehicle on the
road. Recall that we already assigned the location of such a virtual Next Vehicle as
(xH + xahead ,yH) (see Subsection 4.1), but a model for its velocity updating is still
missing. Thus, we propose a way to update VN similar to

VN (t) = αNV (t)∗VN (t−1) ,

where αNV (•) is the evolution parameter, but including some particular consider-
ations. Our way for updating the normalised virtual Next Vehicle speed V̄N is then
given by

V̄N (t) = min(αNV (T (t−1))∗ f (V̄N (t−1)) ,1) , (1)

f (V̄N (t−1)) = max(V̄N (t−1) ,VN (T (t−1))) , (2)

where T (•) is the determined traffic scenario, and VN (•) is the minimum allowed
normalised speed for a virtual Next Vehicle. The inclusion of this minimum limit
speed, which is greater than zero, is to avoid V̄N = 0 which represents that the Host
Vehicle is approaching a stopped vehicle, which is not true because there are no real
vehicles around the NPI (see Fig. 2). Then, min(•,1) in (1) is to guarantee that V̄N
never exceeds the maximum normalisation value 1, and max(•,VN (•)) in (2) is to
guarantee that the virtual Next Vehicle is always moving at least at VN . Both αNV
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and VN are design parameters, and reference values (obtained from simulation tests)
are given in Table 4.

Table 4 Decision matrix for VN , αNV and αR.

Traffic scenario FT AC CT PB LC
Value of VN 0.3 0.2 0.1 0.1 0.3
Value of αNV 1.4 0.7 0.9 0.9 1.4
Value of αR 0.7 0.7 0.7 0.45 0.7

Justification for values in Table 4 are as follows:

• Given previous Free-Traffic/Leaving-Congestion scenarios, it is assumed that the
virtual Next Vehicle can accelerate without problems. Thus, αNV=1.4 represents
an increase of 40% in VN , and VN=0.3 sets a minimum value for V̄N at 0.3.

• Given previous Congested-Traffic/Passing-Bottleneck scenarios, it is assumed
that the virtual Next Vehicle could not have accelerated, and probably could have
had a small deceleration. Thus, αNV=0.9 represents a decrease of 10% in VN ,
and VN=0.1 sets a minimum value for V̄N at 0.1.

• Given a current Approaching-Congestion scenario, it is assumed that the virtual
Next Vehicle is indeed decelerating. Thus, αNV=0.7 represents a decrease of
30% in that VN , and VN=0.2 sets a minimum value for V̄N at 0.2.

5.2 Proposed recommended speed scheme

We propose a calculation method for the recommended cruise speed similar to the
one presented in [5], i.e. a convex linear combination with time-variant coefficients.
However, here we calculate the recommended speed by combining two terms, the
Host Vehicle speed VH and the Next Vehicle speed VN , as follows

VR (t) = (αR (T (t)))∗VN (t)+(1−αR (T (t)))∗VH (t) , (3)

where αR (•) is a time-variant weighting factor calculated from the decision matrix
presented in Table 4. Note that αR is a design parameter, so values in Table 4 were
tuned from simulation tests. The justification for values of αR is as follows:

• Approaching-Congestion/Congested-Traffic scenarios should force the Host Ve-
hicle to slow down in order to travel at most around VN , which in general is a
real vehicle inside a dense platoon immediately ahead of the Host Vehicle. Then,
αR=0.7 means that the recommended speed depends more upon VN than VH ,
causing VN to act like an upper bound.

• Free-Traffic/Leaving-Congestion scenarios should force the Host Vehicle to speed
up in order to reach VN , which is expected to be traveling in a Free-Traffic sce-
nario. Then, αR=0.7 means that the recommended speed depends more upon VN
rather than VH , causing VN to act like a goal speed.
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• The Passing-Bottleneck scenario is determined based on the existence of a Next
Vehicle who is leaving the congestion with positive high ∆VN . However, here the
Host Vehicle is about to leave the traffic jam but is still inside it, so the recom-
mended speed should depend more upon VH than VN . Then, αR=0.45 causes VH
to act like an upper bound.

According to (3), it is observed that VR always depends directly on both VH and
VN , so any noisy behaviour in either of them will be directly reflected on VR. Thus,
two additional processes have to be added: 1) a quantisation process, to avoid a
noisy recommended speed, and 2) a saturation process, to avoid recommending a
speed greater than the speed limit of the road on which the Host Vehicle is traveling.
With this we finally obtain VR ∈min({5∗n} ,RLSH), with n = 1,2, ....

5.3 Proposed recommended distance scheme

We can assess the performance of our recommended speed scheme by evaluating
the usually adopted safe inter-distance policy [10]

DR (t) = h0 +h1Vf (t)+h2
(
V 2

f (t)−V 2
l (t)

)
,

where DR is the recommended (safe) distance, h0 is the minimum safe distance
to the preceding vehicle, h1 is the minimal required headway time (usually set in
hs=0.6 [s]), h2 is a problem-dependent weighting factor, Vf corresponds to the speed
of the Host Vehicle, and Vl to the speed of the preceding vehicle. However, here the
reference is the Next Vehicle, which does not necessarily coincide with the preced-
ing vehicle. Thus, we have to take

Vl (t) =VN (t) ,

and h0 as the safe distance to the Next Vehicle, redefined as follows

h0 =

⌊
XN− (XH +Gmin)

LV +Gmin

⌋
∗ (LV +Gmin)+Gmin,

where Gmin is the minimum allowed gap (safe distance) between two consecutive
vehicles, and LV is the mean longitude of a vehicle in the network. Note that the
Approaching-Congestion, Congested-Traffic and Passing-Bottleneck scenarios are
of special interest, because only in these cases it is expected that there exists a high
density of vehicles between the Host Vehicle and the Next Vehicle (i.e., a higher
probability of collision).

Now, the recommended distance must be compared to the relative distance Xrel ,
measured as the difference between the Host Vehicle’s position and the Next Vehi-
cle’s position

Xrel = XN−XH .
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Then by defining e=Xrel−DR, the case e≥0 means that there is a safe situation
(the relative distance is greater than or equal to the recommended distance), and thus
the case e<0 means that there is a non-safe situation.

6 Validation

To validate the proposed methodology, we use SUMO to simulate thirty-one vehi-
cles with properties as in Table 5, which travel according to a modified Krauss car-
following model [11] on the road defined by Fig. 1 and Table 6. Vehicle 08 exhibits
a special behaviour: it stops at Distance=296 [m] (road section S4) for 100 seconds,
after which it restarts its travel. The data obtained from SUMO was exported to the
Matlab environment Version 7.12.0.635 (R2011a).

The idea behind using vehicles with very high deceleration abilities is to obtain
data in extreme situations (i.e. the vehicles are very prone to having a collision), in
order to evaluate the performance of the proposed methodology in recommending
a safe speed early. In addition, speed restrictions on S2/S3 and S5 emulate realistic
behaviours around a traffic bottleneck and the variety of piecewise constant speed
limits along a same road, respectively.

Table 5 Properties of simulated vehicles used in tests.

Vehicle Type
Attribute A B C

Vehicle’s ID 03,09,11,13,15,17, 04,05,07,10,12,14, 01,02,06,08,16,21,
19,23,25,27,29,31. 18,20,24,26,28. 22,30.

Length [m] 4.4 4.0 4.2
Max Speed [m/s] 40 30 16.677

Acceleration [m/s2] 3 2 1
Deceleration [m/s2] 10 10 10
Minimum Gap [m] 2.5 2.5 2.5

Sigma 0.5 0.5 0.5

6.1 Traffic scenario determination

The inference engine was implemented using the FL Toolbox for use with Matlab
[12], and tested using rN=4 [m], rD=14 [m], xahead=32 [m], WL=3.5 [m] and NL=2.
The obtained results for vehicle number 20 are presented in Fig. 3 using the LOM
(Last Of Maximum) method to calculate the outputs. With this method, all the esti-
mations have a certainty value of 1.0 (i.e. complete certainty).

The traffic scenario determination for the entire set of vehicles is shown in Fig.
4a and Fig. 4b. From Fig. 4a, it can be concluded that almost all traffic scenarios
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Table 6 Properties of road sections in Fig. 1.

Section Length [m] Max Speed [m/s]

S1 175 27.778
S2 5 0.7
S3 30 2.5
S4 235 27.778
S5 55 2.5

Fig. 3 Entire traffic scenario determination for vehicle 20 using LOM.

immediately below a cut at Distance=190 [m] (the medium point of the bottleneck)
are determined as a Passing-Bottleneck scenario (magenta), and that some vehicles
detect the new speed limit around Distance=463 [m] as a Congested-Traffic sce-
nario (red) for a few seconds, just after the new speed limit’s commencement at
Distance=445 [m].

(a) Vehicle vs Distance (b) Vehicle vs Velocity vs Time

Fig. 4 Entire traffic scenario estimation for all vehicles using LOM.

For its part, Fig. 4b shows that most of the velocities beneath a cut at Velocity=
10 [km/h] are successfully classified as either Passing-Bottleneck or Congested-
Traffic scenarios. Moreover, increasing velocities are suitably classified as either
Free-Traffic scenario (green) or Leaving-Congestion scenario (cian), generally af-
ter Passing-Bottleneck or Congested-Traffic scenarios, as confirmed in Fig. 4a. Fi-
nally, decreasing velocities in Fig. 4b are successfully classified as an Approaching-
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Congestion scenario (yelow) when a Passing-Bottleneck or Congested-Traffic sce-
nario is about to occur (also confirmed in Fig. 4a).

6.2 Recommended speed

Results for the particular case of Vehicle 20 (Fig. 5) show that the critical Approaching-
Congestion scenario is tackled properly by detecting the sudden (and maintained)
decreasing of VN at times 78 [s] and 177 [s] and then imposing an anticipated low VR.
With this, the Host Vehicle can be warned of the oncoming traffic jam early, and
thus gains several seconds to perform a smoother braking action.

Fig. 5 Entire VR profile for vehicle 20 using the proposed methodology.

Another sudden decrease in VN occurs at 165 [s], and a low speed is recom-
mended for a single instant. Such a decrease is not caused by any congestion, but
by a stopped vehicle (Vehicle 08) in the middle of a Free-Traffic scenario. Then, the
VR profile is momentarily affected, indicating the existence of an isolated stopped
vehicle (the estimated scenario remains as a Free-Traffic scenario during, and for
some instants after, such a detection).

The performance of all vehicles can easily be analysed from Fig. 6 and Fig. 7 with
a quick visual inspection, due to the colour-convention used: blue sections indicate
that VR ≥ VH . Note that the section for VR < VH corresponding to the lower arrow
in Fig. 7 exhibits a pattern that in general coincides with Approaching-Congestion
scenarios, which can be explained as the approaching of the oncoming Congested-
Traffic/Passing-Bottleneck scenarios with a suitable safe (low) speed. Two other
cases in which VR <VH also happen can be better understood from Fig. 7: the middle
arrow indicates the detection of an isolated vehicle which is stopped in the middle
of the road (Vehicle 08); and the upper arrow represents the case in which a segment
of the road with a lower speed limit will be promptly reached.
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(a) HV-speed/Traffic-scenario profiles. (b) Prevalence of the VR over VH profile: Blue
means VR >VH .

Fig. 6 Analysis of VR for all vehicles in function of time. [Black sections: beyond road’s length].

Fig. 7 Analysis of VR for all vehicles in function of distance. Prevalence of the VR profile over the
VH profile: blue means VR>VH .

6.3 Recommended distance

Our DR scheme was tested with data from both:1) the original set-up (without taking
into account VR), and 2) the improved set-up (manual and isolated adjustment of the
speed according to our VR scheme) with h2=0.01, LV=4.2, and Gmin [m]=2.5 [m].

In Fig. 8a (original setup) we can see that many of the e<0 cases are produced in
Approaching-Congestion scenarios. This is particularly interesting because, there,
VH is much faster than VN , producing large negative values for e (Fig. 8a), thus
resulting in a high probability of collision. In Fig. 8b (improved setup) we can see
that most of those dangerous situations are suitably tackled, and just a few of minor
e<0 still remain.

Recall that in Cooperative ACC schemes the control law depends on the value of
e [10]: the smaller e value, the weaker action control (breaking effort) in tracking
the safety parameters. Thus, according to Fig. 8b, our recommended speed/distance
schemes provide high performance in terms of travelling in safe conditions.
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(a) Xrel ,Dr obtained from Vf =VH . (b) Xrel ,Dr obtained from a Vf in function of VR.

Fig. 8 3D analysis of e=Xrel−Dr for all vehicles. Colored sections correspond to e< 0 (according
the previous color convention).

7 Conclusions and Future Work

A new scheme for safe speed advising based on a cooperative and decentralised
methodology for traffic scenario determination was proposed. Its performance was
assessed using safe policies and supported by experimental tests via SUMO pack-
age. Currently, efforts are focused on evaluating the proposed ISA system beyond
the used setup, i.e. using other realistic situations such as roads with curves and
mobile bottlenecks.

An immediate future task is to use the proposed methodology to design a Co-
operative ACC system by closing the speed/distance loops using the here proposed
VR and DR schemes and a suitable controller. For such a mandatory ISA we have
to be able to develop the corresponding analysis to guarantee string stability. In ad-
dition, other kinds of information can be used to improve the performance of the
advisory system, such as meteorological (weather) and environmental (pollution)
information.
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